咨询与建议

限定检索结果

文献类型

  • 57,254 篇 会议
  • 184 册 图书

馆藏范围

  • 57,431 篇 电子文献
  • 7 种 纸本馆藏

日期分布

学科分类号

  • 57,042 篇 工学
    • 56,774 篇 计算机科学与技术...
    • 7,556 篇 控制科学与工程
    • 2,463 篇 软件工程
    • 2,057 篇 电气工程
    • 483 篇 信息与通信工程
    • 360 篇 生物医学工程(可授...
    • 67 篇 机械工程
    • 57 篇 土木工程
    • 23 篇 石油与天然气工程
    • 18 篇 生物工程
    • 15 篇 仪器科学与技术
  • 4,454 篇 理学
    • 3,698 篇 数学
    • 368 篇 物理学
    • 274 篇 生物学
    • 53 篇 科学技术史(分学科...
    • 52 篇 统计学(可授理学、...
    • 22 篇 系统科学
    • 18 篇 化学
  • 2,190 篇 医学
    • 1,233 篇 基础医学(可授医学...
    • 1,065 篇 临床医学
    • 36 篇 特种医学
  • 2,181 篇 文学
    • 2,178 篇 外国语言文学
  • 1,355 篇 管理学
    • 1,256 篇 管理科学与工程(可...
    • 84 篇 图书情报与档案管...
  • 1,231 篇 教育学
    • 709 篇 教育学
    • 507 篇 心理学(可授教育学...
    • 15 篇 体育学
  • 57 篇 法学
    • 56 篇 社会学
  • 36 篇 艺术学
    • 36 篇 音乐与舞蹈学
  • 35 篇 哲学
    • 35 篇 哲学
  • 13 篇 经济学
  • 1 篇 农学
  • 1 篇 军事学

主题

  • 1,258 篇 artificial intel...
  • 1,112 篇 machine learning
  • 978 篇 deep learning
  • 919 篇 data mining
  • 780 篇 multi agent syst...
  • 725 篇 semantics
  • 527 篇 classification
  • 510 篇 reinforcement le...
  • 474 篇 learning systems
  • 463 篇 clustering
  • 439 篇 neural networks
  • 415 篇 ontology
  • 353 篇 natural language...
  • 257 篇 computers
  • 249 篇 rough sets
  • 236 篇 fuzzy sets
  • 230 篇 feature selectio...
  • 219 篇 computer circuit...
  • 213 篇 knowledge repres...
  • 205 篇 logic programmin...

机构

  • 191 篇 univ chinese aca...
  • 107 篇 chinese acad sci...
  • 65 篇 harbin inst tech...
  • 63 篇 polish acad sci ...
  • 62 篇 wroclaw univ sci...
  • 59 篇 soochow univ sch...
  • 55 篇 delft univ techn...
  • 53 篇 carnegie mellon ...
  • 48 篇 beijing univ tec...
  • 44 篇 chinese acad sci...
  • 44 篇 shanghai jiao to...
  • 43 篇 tu wien austria
  • 42 篇 univ sci & techn...
  • 41 篇 czech tech univ ...
  • 40 篇 univ ulsan sch e...
  • 39 篇 beijing jiaotong...
  • 38 篇 tsinghua univ de...
  • 38 篇 north carolina s...
  • 37 篇 nanjing univ sta...
  • 36 篇 tsinghua univ sc...

作者

  • 47 篇 gelbukh alexande...
  • 42 篇 wang lei
  • 36 篇 reis luis paulo
  • 35 篇 pelachaud cather...
  • 35 篇 malerba donato
  • 34 篇 liu yang
  • 33 篇 novais paulo
  • 33 篇 cpalka krzysztof
  • 32 篇 li li
  • 30 篇 ricci alessandro
  • 27 篇 lau nuno
  • 26 篇 wang hui
  • 26 篇 napoli amedeo
  • 25 篇 boryczka urszula
  • 25 篇 rutkowski leszek
  • 25 篇 wang jing
  • 25 篇 pluhacek michal
  • 25 篇 bickmore timothy
  • 25 篇 calvo hiram
  • 24 篇 villasenor-pined...

语言

  • 57,321 篇 英文
  • 116 篇 中文
  • 1 篇 丹麦文
检索条件"丛书名=Lecture notes in artificial intelligence,"
57438 条 记 录,以下是4721-4730 订阅
排序:
Future Augmentation with Self-distillation in Recommendation  1
收藏 引用
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
作者: Liu, Chong Xie, Ruobing Liu, Xiaoyang Wang, Pinzheng Zheng, Rongqin Zhang, Lixin Li, Juntao Xia, Feng Lin, Leyu Tencent WeChat Beijing Peoples R China OPPO Shenzhen Peoples R China Soochow Univ Suzhou Peoples R China Tencent Shenzhen Peoples R China
Sequential recommendation (SR) aims to provide appropriate items a user will click according to the user's historical behavior sequence. Conventional SR models are trained under the next item prediction task, and ...
来源: 评论
CeFlow: A Robust and Efficient Counterfactual Explanation Framework for Tabular Data Using Normalizing Flows  27th
CeFlow: A Robust and Efficient Counterfactual Explanation Fr...
收藏 引用
27th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
作者: Tri Dung Duong Li, Qian Xu, Guandong Univ Technol Sydney Fac Engn & Informat Technol Ultimo NSW Australia Curtin Univ Sch Elect Engn Comp & Math Sci Perth WA Australia
Counterfactual explanation is a form of interpretable machine learning that generates perturbations on a sample to achieve the desired outcome. The generated samples can act as instructions to guide end users on how t...
来源: 评论
Compressing the Embedding Matrix by a Dictionary Screening Approach in Text Classification  27th
Compressing the Embedding Matrix by a Dictionary Screening A...
收藏 引用
27th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
作者: Zhou, Jing Jing, Xinru Liu, Muyu Wang, Hansheng Renmin Univ China Ctr Appl Stat Beijing Peoples R China Renmin Univ China Sch Stat Beijing Peoples R China Peking Univ Guanghua Sch Management Beijing Peoples R China
In this paper, we propose a dictionary screening method for embedding compression in text classification. The key point is to evaluate the importance of each keyword in the dictionary. To this end, we first train a pr...
来源: 评论
Multiscale Multifractal Detrended Analysis of Speculative Attacks Dynamics in Cryptocurrencies  21st
Multiscale Multifractal Detrended Analysis of Speculative At...
收藏 引用
21st International Conference on artificial intelligence and Soft Computing (ICAISC)
作者: Alaminos, David Belen Salas, M. Univ Barcelona Dept Business Barcelona Spain Univ Malaga Dept Finance & Accounting Malaga Spain Univ Malaga Catedra Econ & Finanzas Sostenibles Malaga Spain
Cryptocurrencies have drawn the interest of both scholars and professionals due to their decentralised, unique payment system supported by blockchain technology and their autonomy from sovereign governments, centralis...
来源: 评论
Multi-granularity Prompts for Topic Shift Detection in Dialogue  19th
Multi-granularity Prompts for Topic Shift Detection in Dialo...
收藏 引用
19th International Conference on Advanced Intelligent Computing Technology and Applications (ICIC)
作者: Lin, Jiangyi Fan, Yaxin Chu, Xiaomin Li, Peifeng Zhu, Qiaoming Soochow Univ Sch Comp Sci & Technol Suzhou Peoples R China
The goal of dialogue topic shift detection is to identify whether the current topic in a conversation has changed or needs to change. Previous work focused on detecting topic shifts using pre-trained models to encode ...
来源: 评论
Benchmarks for Indian Legal NLP: A Survey  13th
Benchmarks for Indian Legal NLP: A Survey
收藏 引用
International Symposium on artificial intelligence (ISAI)
作者: Kalamkar, Prathamesh Venugopalan, Janani Raghavan, Vivek Thoughtworks India Pvt Ltd Chennai Tamil Nadu India Ek Step Fdn Bangalore Karnataka India
Legal text is significantly different from English text (e.g. Wikipedia, News) used for training most natural language processing (NLP) algorithms. As a result, the state of the art algorithms (e.g. GPT3, BERT derivat...
来源: 评论
Ontology Population from French Classified Ads  1
收藏 引用
28th International Conference on Graph-Based Representation and Reasoning (ICCS)
作者: Alec, Celine Normandie Univ UNICAEN CNRS ENSICAENGREYC F-14000 Caen France
Understanding texts written in natural language is a challenging task. Semantic Web technologies, in particular ontologies, can be used to represent knowledge from a specific domain and reason like a human. Ontology p...
来源: 评论
Boosting Generalized Few-Shot Learning by Scattering Intra-class Distribution
Boosting Generalized Few-Shot Learning by Scattering Intra-c...
收藏 引用
5th International Workshop on Learning with Imbalanced Domains - Theory and Applications / European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
作者: Yu, Yunlong Jin, Lisha Li, Yingming Zhejiang Univ Hangzhou Zhejiang Peoples R China
Generalized Few-Shot Learning (GFSL) applies the model trained with the base classes to predict the samples from both base classes and novel classes, where each novel class is only provided with a few labeled samples ...
来源: 评论
Semantic Relation Transfer for Non-overlapped Cross-domain Recommendations  27th
Semantic Relation Transfer for Non-overlapped Cross-domain R...
收藏 引用
27th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
作者: Li, Zhi Amagata, Daichi Zhang, Yihong Hara, Takahiro Haruta, Shuichiro Yonekawa, Kei Kurokawa, Mori Osaka Univ Suita Osaka Japan KDDI Res Inc Fujimino Japan
Although cross-domain recommender systems (CDRSs) are promising approaches to solving the cold-start problem, most CDRSs require overlapped users, which significantly limits their applications. To remove the overlap l...
来源: 评论
Multi-robot Adaptive Sampling for Supervised Spatiotemporal Forecasting  22nd
Multi-robot Adaptive Sampling for Supervised Spatiotemporal ...
收藏 引用
22nd EPIA Conference on artificial intelligence (EPIA)
作者: Kailas, Siva Luo, Wenhao Sycara, Katia Carnegie Mellon Univ Pittsburgh PA 15213 USA Univ N Carolina Charlotte NC 28223 USA
Learning to forecast spatiotemporal (ST) environmental processes from a sparse set of samples collected autonomously is a difficult task from both a sampling perspective (collecting the best sparse samples) and from a...
来源: 评论