咨询与建议

限定检索结果

文献类型

  • 57,254 篇 会议
  • 184 册 图书

馆藏范围

  • 57,431 篇 电子文献
  • 7 种 纸本馆藏

日期分布

学科分类号

  • 57,035 篇 工学
    • 56,756 篇 计算机科学与技术...
    • 7,563 篇 控制科学与工程
    • 2,548 篇 软件工程
    • 2,065 篇 电气工程
    • 514 篇 信息与通信工程
    • 373 篇 生物医学工程(可授...
    • 69 篇 机械工程
    • 60 篇 土木工程
    • 47 篇 生物工程
    • 23 篇 石油与天然气工程
    • 16 篇 仪器科学与技术
  • 4,529 篇 理学
    • 3,741 篇 数学
    • 378 篇 物理学
    • 305 篇 生物学
    • 67 篇 统计学(可授理学、...
    • 53 篇 科学技术史(分学科...
    • 28 篇 系统科学
    • 26 篇 化学
  • 2,201 篇 医学
    • 1,244 篇 基础医学(可授医学...
    • 1,075 篇 临床医学
    • 36 篇 特种医学
  • 2,181 篇 文学
    • 2,178 篇 外国语言文学
  • 1,390 篇 管理学
    • 1,266 篇 管理科学与工程(可...
    • 111 篇 图书情报与档案管...
  • 1,235 篇 教育学
    • 713 篇 教育学
    • 507 篇 心理学(可授教育学...
    • 15 篇 体育学
  • 63 篇 法学
    • 62 篇 社会学
  • 36 篇 艺术学
    • 36 篇 音乐与舞蹈学
  • 35 篇 哲学
    • 35 篇 哲学
  • 14 篇 经济学
  • 1 篇 农学
  • 1 篇 军事学

主题

  • 1,255 篇 artificial intel...
  • 1,104 篇 machine learning
  • 972 篇 deep learning
  • 919 篇 data mining
  • 781 篇 multi agent syst...
  • 726 篇 semantics
  • 526 篇 classification
  • 510 篇 reinforcement le...
  • 475 篇 learning systems
  • 462 篇 clustering
  • 434 篇 neural networks
  • 413 篇 ontology
  • 342 篇 natural language...
  • 257 篇 computers
  • 249 篇 rough sets
  • 236 篇 fuzzy sets
  • 230 篇 feature selectio...
  • 219 篇 computer circuit...
  • 213 篇 knowledge repres...
  • 205 篇 logic programmin...

机构

  • 191 篇 univ chinese aca...
  • 107 篇 chinese acad sci...
  • 65 篇 harbin inst tech...
  • 63 篇 polish acad sci ...
  • 62 篇 wroclaw univ sci...
  • 59 篇 soochow univ sch...
  • 55 篇 delft univ techn...
  • 53 篇 carnegie mellon ...
  • 48 篇 beijing univ tec...
  • 44 篇 chinese acad sci...
  • 44 篇 shanghai jiao to...
  • 43 篇 tu wien austria
  • 42 篇 univ sci & techn...
  • 41 篇 czech tech univ ...
  • 40 篇 univ ulsan sch e...
  • 39 篇 beijing jiaotong...
  • 38 篇 tsinghua univ de...
  • 38 篇 north carolina s...
  • 37 篇 nanjing univ sta...
  • 36 篇 tsinghua univ sc...

作者

  • 47 篇 gelbukh alexande...
  • 42 篇 wang lei
  • 36 篇 reis luis paulo
  • 35 篇 pelachaud cather...
  • 35 篇 malerba donato
  • 34 篇 liu yang
  • 33 篇 novais paulo
  • 33 篇 cpalka krzysztof
  • 32 篇 li li
  • 30 篇 ricci alessandro
  • 27 篇 lau nuno
  • 26 篇 wang hui
  • 26 篇 napoli amedeo
  • 25 篇 boryczka urszula
  • 25 篇 rutkowski leszek
  • 25 篇 wang jing
  • 25 篇 pluhacek michal
  • 25 篇 bickmore timothy
  • 25 篇 calvo hiram
  • 24 篇 wu bin

语言

  • 57,321 篇 英文
  • 116 篇 中文
  • 1 篇 丹麦文
检索条件"丛书名=Lecture notes in artificial intelligence,"
57438 条 记 录,以下是71-80 订阅
排序:
MMHS: Multimodal Model for Hate Speech Intensity Prediction  26th
MMHS: Multimodal Model for Hate Speech Intensity Prediction
收藏 引用
26th International Conference on Speech and Computer
作者: Goel, Aman Poswal, Abhishek Carnegie Mellon Univ 5000 Forbes Ave Pittsburgh PA 15213 USA Hong Kong Univ Sci & Technol Kowloon Hong Kong Peoples R China
This paper presents a novel multimodal model that integrates both image and large language model capabilities to enhance hate intensity prediction, traditionally a purely text-based task. Accurately assessing hate spe...
来源: 评论
Exploring Multimodal Information Fusion in Spoken Off-Topic Degree Assessment  13th
Exploring Multimodal Information Fusion in Spoken Off-Topic ...
收藏 引用
13th International Conference on Natural Language Processing and Chinese Computing
作者: Cong, Fan Shen, Guo Wumaier, Aishan Xinjiang Univ Sch Comp Sci & Technol Urumqi Peoples R China
Currently, most research methods for spoken off-topic detection are based on the results of upstream speech recognition tasks. However, upstream speech recognition tasks may introduce issues such as homophones, text r...
来源: 评论
Multi-hop Reading Comprehension Model Based on Abstract Meaning Representation and Multi-task Joint Learning  13th
Multi-hop Reading Comprehension Model Based on Abstract Mean...
收藏 引用
13th International Conference on Natural Language Processing and Chinese Computing
作者: Zhao, Peiyu Zhang, Zhujian Liu, Bo Jinan Univ Coll Informat Sci & Technol Guangzhou 510632 Peoples R China
In recent years, the issue of document-based extractive reading comprehension has been widely studied. Multi-hop reading comprehension requires obtaining supporting facts from multiple paragraphs in the document and r...
来源: 评论
Retrieval Augmented Tree of Thoughts  13th
Retrieval Augmented Tree of Thoughts
收藏 引用
13th International Conference on Natural Language Processing and Chinese Computing
作者: Liu, Xuemin Liu, Jie Nankai Univ Coll Artificial Intelligence Engn Res Ctr Trusted Behav Intelligence Natl Key Lab Intelligent Tracking & Forecasting I Tianjin Peoples R China
Large language models (LLMs) are able to answer reasoning questions through generating reasoning processes, such as Chains of Thoughts (CoT) and Trees of Thoughts (ToT). To retrieve external documents effectively for ...
来源: 评论
Multiword Units in Russian Everyday Speech: Empirical Classification and Corpus-Based Studies  26th
Multiword Units in Russian Everyday Speech: Empirical Classi...
收藏 引用
26th International Conference on Speech and Computer
作者: Bogdanova-Beglarian, Natalia, V Blinova, Olga, V Khokhlova, Maria, V Sherstinova, Tatiana Y. Popova, Tatiana, I St Petersburg State Univ St Petersburg Russia HSE Univ St Petersburg Russia
The article is dedicated to the results of a research project describing the classes and functioning of multiword units in contemporary Russian everyday speech. The concept of multiword units encompasses quite diverse...
来源: 评论
Retrieval-Enhanced Template Generation for Template Extraction  13th
Retrieval-Enhanced Template Generation for Template Extracti...
收藏 引用
13th International Conference on Natural Language Processing and Chinese Computing
作者: Wang, Renyu Xiang, Wei Wang, Zhenhua Wang, Bang Huazhong Univ Sci & Technol HUST Sch Elect Informat & Commun Wuhan Peoples R China Cent China Normal Univ Fac Artificial Intelligence Educ Wuhan Peoples R China
Template extraction tasks, such as role-filler entity extraction (REE) and template filling (TF), are classic problems in information extraction. Previous works usually simplify the TF task and focus only on the REE t...
来源: 评论
Enhancing Complex Causality Extraction via Improved Subtask Interaction and Knowledge Fusion  13th
Enhancing Complex Causality Extraction via Improved Subtask ...
收藏 引用
13th International Conference on Natural Language Processing and Chinese Computing
作者: Gao, Jinglong Lu, Chen Ding, Xiao Li, Zhongyang Liu, Ting Qin, Bing Harbin Inst Technol Res Ctr Social Comp & Informat Retrieval Harbin Peoples R China Natl Key Lab Informat Syst Engn Nanjing Peoples R China Huawei Cloud Shenzhen Peoples R China
Event Causality Extraction (ECE) aims at extracting causal event pairs from texts. Despite ChatGPT's recent success, fine-tuning small models remains the best approach for the ECE task. However, existing fine-tuni...
来源: 评论
Integrating Hierarchical Key Information and Semantic Difference Features for Long Text Matching  13th
Integrating Hierarchical Key Information and Semantic Differ...
收藏 引用
13th International Conference on Natural Language Processing and Chinese Computing
作者: Wang, Chunnian Li, Junliang Zhang, Hu Shanxi Univ Sch Big Data Sch Comp & Informat Technol Taiyuan Peoples R China
Long text matching refers to the process of matching two pieces of text at the document level. Current methods struggle to effectively capture the key information scattered throughout long texts, and are insensitive t...
来源: 评论
Exploring MetaConformer for Speech Enhancement  26th
Exploring MetaConformer for Speech Enhancement
收藏 引用
26th International Conference on Speech and Computer
作者: Foerner, Lukas Dauner, Maximilian Univ Hosp Augsburg Dept Diagnost & Intervent Radiol & Neuroradiol Clin Computat Med Imaging Res Augsburg Germany Hsch Munchen Univ Appl Sci Munich Ctr Digital Sci & AI Munich Germany
The convolution-augmented Transformer (Conformer) has emerged as a promising architecture in the field of speech enhancement (SE), capable of capturing both local and global dependencies in speech signals. Recent stud...
来源: 评论
Overcoming Rigid and Monotonous: Enhancing Knowledge-Grounded Conversation Generation via Multi-granularity Knowledge  13th
Overcoming Rigid and Monotonous: Enhancing Knowledge-Grounde...
收藏 引用
13th International Conference on Natural Language Processing and Chinese Computing
作者: Zhang, Xingsheng Deng, YiFan Hu, Yue Li, Yunpeng Guo, Ping Chinese Acad Sci Inst Informat Engn Beijing Peoples R China Univ Chinese Acad Sci Sch Cyber Secur Beijing Peoples R China
Knowledge-grounded conversation (KGC) shows great potential in building an engaging and reliable chatbot, in which knowledge-aware generation is a key ingredient in it. Traditional methods, which usually generate resp...
来源: 评论