咨询与建议

限定检索结果

文献类型

  • 57,254 篇 会议
  • 184 册 图书

馆藏范围

  • 57,431 篇 电子文献
  • 7 种 纸本馆藏

日期分布

学科分类号

  • 57,042 篇 工学
    • 56,774 篇 计算机科学与技术...
    • 7,556 篇 控制科学与工程
    • 2,463 篇 软件工程
    • 2,057 篇 电气工程
    • 483 篇 信息与通信工程
    • 360 篇 生物医学工程(可授...
    • 67 篇 机械工程
    • 57 篇 土木工程
    • 23 篇 石油与天然气工程
    • 18 篇 生物工程
    • 15 篇 仪器科学与技术
  • 4,454 篇 理学
    • 3,698 篇 数学
    • 368 篇 物理学
    • 274 篇 生物学
    • 53 篇 科学技术史(分学科...
    • 52 篇 统计学(可授理学、...
    • 22 篇 系统科学
    • 18 篇 化学
  • 2,190 篇 医学
    • 1,233 篇 基础医学(可授医学...
    • 1,065 篇 临床医学
    • 36 篇 特种医学
  • 2,181 篇 文学
    • 2,178 篇 外国语言文学
  • 1,355 篇 管理学
    • 1,256 篇 管理科学与工程(可...
    • 84 篇 图书情报与档案管...
  • 1,231 篇 教育学
    • 709 篇 教育学
    • 507 篇 心理学(可授教育学...
    • 15 篇 体育学
  • 57 篇 法学
    • 56 篇 社会学
  • 36 篇 艺术学
    • 36 篇 音乐与舞蹈学
  • 35 篇 哲学
    • 35 篇 哲学
  • 13 篇 经济学
  • 1 篇 农学
  • 1 篇 军事学

主题

  • 1,258 篇 artificial intel...
  • 1,112 篇 machine learning
  • 978 篇 deep learning
  • 919 篇 data mining
  • 780 篇 multi agent syst...
  • 725 篇 semantics
  • 527 篇 classification
  • 510 篇 reinforcement le...
  • 474 篇 learning systems
  • 463 篇 clustering
  • 439 篇 neural networks
  • 415 篇 ontology
  • 353 篇 natural language...
  • 257 篇 computers
  • 249 篇 rough sets
  • 236 篇 fuzzy sets
  • 230 篇 feature selectio...
  • 219 篇 computer circuit...
  • 213 篇 knowledge repres...
  • 205 篇 logic programmin...

机构

  • 191 篇 univ chinese aca...
  • 107 篇 chinese acad sci...
  • 65 篇 harbin inst tech...
  • 63 篇 polish acad sci ...
  • 62 篇 wroclaw univ sci...
  • 59 篇 soochow univ sch...
  • 55 篇 delft univ techn...
  • 53 篇 carnegie mellon ...
  • 48 篇 beijing univ tec...
  • 44 篇 chinese acad sci...
  • 44 篇 shanghai jiao to...
  • 43 篇 tu wien austria
  • 42 篇 univ sci & techn...
  • 41 篇 czech tech univ ...
  • 40 篇 univ ulsan sch e...
  • 39 篇 beijing jiaotong...
  • 38 篇 tsinghua univ de...
  • 38 篇 north carolina s...
  • 37 篇 nanjing univ sta...
  • 36 篇 tsinghua univ sc...

作者

  • 47 篇 gelbukh alexande...
  • 42 篇 wang lei
  • 36 篇 reis luis paulo
  • 35 篇 pelachaud cather...
  • 35 篇 malerba donato
  • 34 篇 liu yang
  • 33 篇 novais paulo
  • 33 篇 cpalka krzysztof
  • 32 篇 li li
  • 30 篇 ricci alessandro
  • 27 篇 lau nuno
  • 26 篇 wang hui
  • 26 篇 napoli amedeo
  • 25 篇 boryczka urszula
  • 25 篇 rutkowski leszek
  • 25 篇 wang jing
  • 25 篇 pluhacek michal
  • 25 篇 bickmore timothy
  • 25 篇 calvo hiram
  • 24 篇 villasenor-pined...

语言

  • 57,321 篇 英文
  • 116 篇 中文
  • 1 篇 丹麦文
检索条件"丛书名=Lecture notes in artificial intelligence,"
57438 条 记 录,以下是81-90 订阅
排序:
Improving Causal Inference of Large Language Models with SCM Tools  13th
Improving Causal Inference of Large Language Models with SCM...
收藏 引用
13th International Conference on Natural Language Processing and Chinese Computing
作者: Hua, Zhenyang Xing, Shuyue Jiang, Huixing Wei, Chen Wang, Xiaojie Beijing Univ Posts & Telecommun Ctr Intelligence Sci & Technol Beijing Peoples R China LI Auto Inc Beijing Peoples R China
Many previous studies have shown that Large Language Models (LLMs) are highly competent on many Natural Language Processing (NLP) tasks. However, a recent study showed the poor ability of LLMs to perform causal infere...
来源: 评论
Overcoming Rigid and Monotonous: Enhancing Knowledge-Grounded Conversation Generation via Multi-granularity Knowledge  13th
Overcoming Rigid and Monotonous: Enhancing Knowledge-Grounde...
收藏 引用
13th International Conference on Natural Language Processing and Chinese Computing
作者: Zhang, Xingsheng Deng, YiFan Hu, Yue Li, Yunpeng Guo, Ping Chinese Acad Sci Inst Informat Engn Beijing Peoples R China Univ Chinese Acad Sci Sch Cyber Secur Beijing Peoples R China
Knowledge-grounded conversation (KGC) shows great potential in building an engaging and reliable chatbot, in which knowledge-aware generation is a key ingredient in it. Traditional methods, which usually generate resp...
来源: 评论
Joint Graph Augmentation and Adaptive Synthetic Sampling for Imbalanced Node Classification  13th
Joint Graph Augmentation and Adaptive Synthetic Sampling for...
收藏 引用
13th International Conference on Natural Language Processing and Chinese Computing
作者: Lu, Guangquan Chen, Wanxin Han, Yadan Tang, Jiamin Huang, Faliang Guangxi Normal Univ Key Lab Educ Blockchain & Intelligent Technol Guangxi Key Lab Multisource Informat Min & Secur Guilin 541004 Peoples R China Nanning Normal Univ Guangxi Key Lab Human Machine Interact & Intellig Nanning Peoples R China
Graph representation learning is a very important part of the field of machine learning. It focuses on learning and extracting representations of nodes and edges in graph data to better analyze features and relationsh...
来源: 评论
S2D: Enhancing Zero-Shot Cross-Lingual Event Argument Extraction with Semantic Knowledge  13th
S2D: Enhancing Zero-Shot Cross-Lingual Event Argument Extrac...
收藏 引用
13th International Conference on Natural Language Processing and Chinese Computing
作者: Zhao, Zongkai Li, Xiuhua Wei, Kaiwen Chongqing Univ Sch Big Data & Software Engn Chongqing Peoples R China Chongqing Univ Coll Comp Sci Chongqing Peoples R China
Zero-shot Cross-lingual EAE has garnered significant interests from the community because it could minimize the need for extensive data annotation to identify the roles of the arguments within a specific event. Some p...
来源: 评论
What is the Best Model? Application-Driven Evaluation for Large Language Models  13th
What is the Best Model? Application-Driven Evaluation for La...
收藏 引用
13th International Conference on Natural Language Processing and Chinese Computing
作者: Lian, Shiguo Zhao, Kaikai Liu, Xinhui Lei, Xuejiao Yang, Bikun Zhang, Wenjing Wang, Kai Liu, Zhaoxiang China Unicom AI Innovat Ctr Beijing 100013 Peoples R China China Unicom Unicom Digital Technol Beijing 100013 Peoples R China
General large language models enhanced with supervised fine-tuning and reinforcement learning from human feedback are increasingly popular in academia and industry as they generalize foundation models to various pract...
来源: 评论
Enhancing Fake News Detection with Large Language Models Through Multi-agent Debates  13th
Enhancing Fake News Detection with Large Language Models Thr...
收藏 引用
13th International Conference on Natural Language Processing and Chinese Computing
作者: Jeptoo, Korir Nancy Su, Chengjie Harbin Inst Technol Fac Comp Harbin Peoples R China
Large language models (LLMs) are showing dramatic progress in terms of language generation and in reasoning tasks. Existing works on fake news detection mostly focus on fine-tuning small language models such as BERT. ...
来源: 评论
Integration of Short-Term and Long-Term Harmonic Peaks in a Two-Level Discriminative Weight Training Framework for Voice Activity Detection  26th
Integration of Short-Term and Long-Term Harmonic Peaks in a ...
收藏 引用
26th International Conference on Speech and Computer
作者: Tan, YingWei Volkswagen Mobvoi Beijing Informat Technol Co Ltd Beijing Peoples R China
Short-term harmonic peaks (STHPs) have been used in a harmonic frequency-based multiple observation likelihood ratio test (Hmfreq-MOLRT) VAD successfully. Through the characteristics of spectral harmonicity, the metho...
来源: 评论
Bias Unveiled: Enhancing Fairness in German Word Embeddings with Large Language Models  26th
Bias Unveiled: Enhancing Fairness in German Word Embeddings ...
收藏 引用
26th International Conference on Speech and Computer
作者: Saeid, Yasser Kopinski, Thomas South Westphalia Univ Appl Sci Meschede Germany
Gender bias in word embedding algorithms has garnered significant attention due to its integration into machine learning systems and its potential to reinforce stereotypes. Despite ongoing efforts, the root causes of ...
来源: 评论
Margin Discrepancy-Based Adversarial Training for Multi-Domain Text Classification  13th
Margin Discrepancy-Based Adversarial Training for Multi-Doma...
收藏 引用
13th International Conference on Natural Language Processing and Chinese Computing
作者: Wu, Yuan Jilin Univ Sch Artificial Intelligence Changchun Peoples R China
Multi-domain text classification (MDTC) endeavors to harness available resources from correlated domains to enhance the classification accuracy of the target domain. Presently, most MDTC approaches that embrace advers...
来源: 评论
Mathematical Reasoning via Multi-step Self Questioning and Answering for Small Language Models  13th
Mathematical Reasoning via Multi-step Self Questioning and A...
收藏 引用
13th International Conference on Natural Language Processing and Chinese Computing
作者: Chen, Kaiyuan Wang, Jin Zhang, Xuejie Yunnan Univ Sch Informat Sci & Engn Kunming Yunnan Peoples R China
Mathematical reasoning is challenging for large language models (LLMs), while the scaling relationship concerning LLM capacity is under-explored. Existing works have tried to leverage the rationales of LLMs to train s...
来源: 评论