This paper is intended to give an introduction to several techniques used in automated theorem proving, and based on the concept of ordering on terms and more generally on formulas. Different orderings and their autom...
ISBN:
(纸本)0821806114
This paper is intended to give an introduction to several techniques used in automated theorem proving, and based on the concept of ordering on terms and more generally on formulas. Different orderings and their automation are presented and several applications are considered. We show how orderings provide a way to incorporate equality decision procedures in theorem provers. We also illustrate their fundamental role to automatise proofs by induction and proofs by refutation. Finally, we explain how they allow pruning the search space of a theorem prover by defining strategies to restrict application of inference rules.
This book introduces readers to key ideas and applications of computational algebraic geometry. Beginning with the discovery of Gröbner bases and fueled by the advent of modern computers and the rediscovery of re...
ISBN:
(纸本)9780821807507
This book introduces readers to key ideas and applications of computational algebraic geometry. Beginning with the discovery of Gröbner bases and fueled by the advent of modern computers and the rediscovery of resultants, computational algebraic geometry has grown rapidly in importance. The fact that “crunching equations” is now as easy as “crunching numbers” has had a profound impact in recent years. At the same time, the mathematics used in computational algebraic geometry is unusually elegant and accessible, which makes the subject easy to learn and easy to apply. This book begins with an introduction to Gröbner bases and resultants, then discusses some of the more recent methods for solving systems of polynomial equations. A sampler of possible applications follows, including computer-aided geometric design, complex information systems, integer programming, and algebraic coding theory. The lectures in the book assume no previous acquaintance with the material.
There exists a history of great expectations and large investments involving Artificial Intelligence (AI). There are also notable shortfalls and memorable disappointments. One major controversy regarding AI is just h...
There exists a history of great expectations and large investments involving Artificial Intelligence (AI). There are also notable shortfalls and memorable disappointments. One major controversy regarding AI is just how mathematical a field it is or should be. This text includes contributions that examine the connections between AI and mathematics, demonstrating the potential for mathematical applications and exposing some of the more mathematical areas within AI. The goal is to stimulate interest in people who can contribute to the field or use its results. Included is work by M. Newborn on the famous Deep Blue chess match. He discusses highly mathematical techniques involving graph theory, combinatorics and probability and statistics. G. Shafer offers his development of probability through probability trees with some of the results appearing here for the first time. M. Golumbic treats temporal reasoning with ties to the famous Frame Problem. His contribution involves logic, combinatorics and graph theory and leads to two chapters with logical themes. H. Kirchner explains how ordering techniques in automated reasoning systems make deduction more efficient. Constraint logic programming is discussed by C. Lassez, who shows its intimate ties to linear programming with crucial theorems going back to Fourier. V. Nalwa's work provides a brief tour of computer vision, tying it to mathematics—from combinatorics, probability and geometry to partial differential equations. All authors are gifted expositors and are current contributors to the field. The wide scope of the volume includes research problems, research tools and good motivational material for teaching.
This book is the result of an AMS Short Course on Knots and Physics that was held in San Francisco (January 1994). The range of the course went beyond knots to the study of invariants of low dimensional manifolds and ...
ISBN:
(纸本)0821803808
This book is the result of an AMS Short Course on Knots and Physics that was held in San Francisco (January 1994). The range of the course went beyond knots to the study of invariants of low dimensional manifolds and extensions of this work to four manifolds and to higher dimensions. The authors use ideas and methods of mathematical physics to extract topological information about knots and manifolds. Features: A basic introduction to knot polynomials in relation to statistical link invariants. Concise introductions to topological quantum field theories and to the role of knot theory in quantum gravity. Knots and Physics would be an excellent supplement to a course on algebraic topology or a physics course on field theory.
This book connects coding theory with actual applications in consumer electronics and with other areas of mathematics. Different Aspects of Coding Theory covers in detail the mathematical foundations of digital data s...
ISBN:
(纸本)9780821803790
This book connects coding theory with actual applications in consumer electronics and with other areas of mathematics. Different Aspects of Coding Theory covers in detail the mathematical foundations of digital data storage and makes connections to symbolic dynamics, linear systems, and finite automata. It also explores the use of algebraic geometry within coding theory and examines links with finite geometry, statistics, and theoretical computer science. Features: A unique combination of mathematical theory and engineering practice. Much diversity and variety among chapters, thus offering broad appeal. Topics relevant to mathematicians, statisticians, engineers, and computer scientists. Contributions by recognized scholars.
Geometry and topology are subjects generally considered to be “pure” mathematics. Recently, however, some of the methods and results in these two areas have found new utility in both wet-lab science (biology and che...
ISBN:
(纸本)9780821855027
Geometry and topology are subjects generally considered to be “pure” mathematics. Recently, however, some of the methods and results in these two areas have found new utility in both wet-lab science (biology and chemistry) and theoretical physics. Conversely, science is influencing mathematics, from posing questions that call for the construction of mathematical models to exporting theoretical methods of attack on long-standing problems of mathematical interest. Based on an AMS Short Course held in January 1992, this book contains six introductory articles on these intriguing new connections. There are articles by a chemist and a biologist about mathematics, and four articles by mathematicians writing about science. All are expository and require no specific knowledge of the science and mathematics involved. Because this book communicates the excitement and utility of mathematics research at an elementary level, it is an excellent textbook in an advanced undergraduate mathematics course.
This book is based on the AMS Short Course, The Unreasonable Effectiveness of Number Theory, held in Orono, Maine, in August 1991. This Short Course provided some views into the great breadth of applications of number...
This book is based on the AMS Short Course, The Unreasonable Effectiveness of Number Theory, held in Orono, Maine, in August 1991. This Short Course provided some views into the great breadth of applications of number theory outside cryptology and highlighted the power and applicability of number-theoretic ideas. Because number theory is one of the most accessible areas of mathematics, this book will appeal to a general mathematical audience as well as to researchers in other areas of science and engineering who wish to learn how number theory is being applied outside of mathematics. All of the chapters are written by leading specialists in number theory and provides excellent introduction to various applications.
Probabilistic methods have become a vital tool in the arsenal of every combinatorialist. The theory of random graphs is still a prime area for the use of probabilistic methods, and, over the years, these methods have ...
详细信息
Probabilistic methods have become a vital tool in the arsenal of every combinatorialist. The theory of random graphs is still a prime area for the use of probabilistic methods, and, over the years, these methods have also proved of paramount importance in many associated areas such as the design and analysis of computer algorithms. In recent years, probabilistic combinatorics has undergone revolutionary changes as the result of the appearance of some exciting new techniques such as martingale inequalities, discrete isoperimetric inequalities, Fourier analysis on groups, eigenvalue techniques, branching processes, and rapidly mixing Markov chains. The aim of this volume is to review briefly the classical results in the theory of random graphs and to present several of the important recent developments in probabilistic combinatorics, together with some applications. The first paper contains a brief introduction to the theory of random graphs. The second paper reviews explicit constructions of random-like graphs and discusses graphs having a variety of useful properties. Isoperimetric inequalities, of paramount importance in probabilistic combinatorics, are covered in the third paper. The chromatic number of random graphs is presented in the fourth paper, together with a beautiful inequality due to Janson and the important and powerful Stein-Chen method for Poisson approximation. The aim of the fifth paper is to present a number of powerful new methods for proving that a Markov chain is “rapidly mixing” and to survey various related questions, while the sixth paper looks at the same topic in a very different context. For the random walk on the cube, the convergence to the stable distribution is best analyzed through Fourier analysis; the final paper examines this topic and proceeds to several more sophisticated applications. Open problems can be found throughout each paper.
暂无评论