A unique synthesis of the three existing Fourier-analytic treatments of quadratic reciprocity. The relative quadratic case was first settled by Hecke in 1923, then recast by Weil in 1964 into the language of unitary g...
详细信息
ISBN:
(数字)9781118032947
ISBN:
(纸本)9780471358305
A unique synthesis of the three existing Fourier-analytic treatments of quadratic reciprocity. The relative quadratic case was first settled by Hecke in 1923, then recast by Weil in 1964 into the language of unitary group representations. The analytic proof of the general n-th order case is still an open problem today, going back to the end of Hecke's famous treatise of 1923. The Fourier-Analytic Proof of Quadratic Reciprocity provides number theorists interested in analytic methods applied to reciprocity laws with a unique opportunity to explore the works of Hecke, Weil, and Kubota. This work brings together for the first time in a single volume the three existing formulations of the Fourier-analytic proof of quadratic reciprocity. It shows how Weil's groundbreaking representation-theoretic treatment is in fact equivalent to Hecke's classical approach, then goes a step further, presenting Kubota's algebraic reformulation of the Hecke-Weil proof. Extensive commutative diagrams for comparing the Weil and Kubota architectures are also featured. The author clearly demonstrates the value of the analytic approach, incorporating some of the most powerful tools of modern number theory, including adèles, metaplectric groups, and representations. Finally, he points out that the critical common factor among the three proofs is Poisson summation, whose generalization may ultimately provide the resolution for Hecke's open problem.
A complete study on an important class of linear dynamical systems-positive linear systems One of the most often-encountered systems in nearly all areas of science and technology, positive linear systems is a specific...
ISBN:
(数字)9781118033029
ISBN:
(纸本)9780471384564
A complete study on an important class of linear dynamical systems-positive linear systems One of the most often-encountered systems in nearly all areas of science and technology, positive linear systems is a specific but remarkable and fascinating class. Renowned scientists Lorenzo Farina and Sergio Rinaldi introduce readers to the world of positive linear systems in their rigorous but highly accessible book, rich in applications, examples, and figures. This professional reference is divided into three main parts: The first part contains the definitions and basic properties of positive linear systems. The second part, following the theoretical exposition, reports the main conceptual results, considering applicable examples taken from a number of widely used models. The third part is devoted to the study of some classes of positive linear systems of particular relevance in applications (such as the Leontief model, the Leslie model, the Markov chains, the compartmental systems, and the queueing systems). Readers familiar with linear algebra and linear systems theory will appreciate the way arguments are treated and presented. Extraordinarily comprehensive, Positive Linear Systems features: * Applications from a variety of backgrounds including modeling, control engineering, computer science, demography, economics, bioengineering, chemistry, and ecology * References and annotated bibliographies throughout the book * Two appendices concerning linear algebra and linear systems theory for readers unfamiliar with the mathematics used Farina and Rinaldi make no effort to hide their enthusiasm for the topics presented, making Positive Linear Systems: Theory and Applications an indispensable resource for researchers and professionals in a broad range of fields.
A novel, practical introduction to functional analysis In the twenty years since the first edition of applied Functional Analysis was published, there has been an explosion in the number of books on functional analysi...
ISBN:
(数字)9781118032725
ISBN:
(纸本)9780471179764
A novel, practical introduction to functional analysis In the twenty years since the first edition of applied Functional Analysis was published, there has been an explosion in the number of books on functional analysis. Yet none of these offers the unique perspective of this new edition. Jean-Pierre Aubin updates his popular reference on functional analysis with new insights and recent discoveries-adding three new chapters on set-valued analysis and convex analysis, viability kernels and capture basins, and first-order partial differential equations. He presents, for the first time at an introductory level, the extension of differential calculus in the framework of both the theory of distributions and set-valued analysis, and discusses their application for studying boundary-value problems for elliptic and parabolic partial differential equations and for systems of first-order partial differential equations. To keep the presentation concise and accessible, Jean-Pierre Aubin introduces functional analysis through the simple Hilbertian structure. He seamlessly blends puremathematics with applied areas that illustrate the theory, incorporating a broad range of examples from numerical analysis, systems theory, calculus of variations, control and optimization theory, convex and nonsmooth analysis, and more. Finally, a summary of the essential theorems as well as exercises reinforcing key concepts are provided. applied Functional Analysis, Second Edition is an excellent and timely resource for both pure and applied mathematicians.
Advanced algebra in the service of contemporary mathematical research-- a unique introduction. This volume takes an altogether new approach to advanced algebra. Its intriguing title, inspired by the term postmodernism...
ISBN:
(数字)9781118032589
ISBN:
(纸本)9780471127383
Advanced algebra in the service of contemporary mathematical research-- a unique introduction. This volume takes an altogether new approach to advanced algebra. Its intriguing title, inspired by the term postmodernism, denotes a departure from van der Waerden's Modern Algebra--a book that has dominated the field for nearly seventy years. Post-Modern Algebra offers a truly up-to-date alternative to the standard approach, explaining topics from an applications-based perspective rather than by abstract principles alone. The book broadens the field of study to include algebraic structures and methods used in current and emerging mathematical research, and describes the powerful yet subtle techniques of universal algebra and category theory. Classical algebraic areas of groups, rings, fields, and vector spaces are bolstered by such topics as ordered sets, monoids, monoid actions, quasigroups, loops, lattices, Boolean algebras, categories, and Heyting algebras. The text features: * A clear and concise treatment at an introductory level, tested in university courses. * A wealth of exercises illustrating concepts and their practical application. * Effective techniques for solving research problems in the real world. * Flexibility of presentation, making it easy to tailor material to specific needs. * Help with elementary proofs and algebraic notations for students of varying abilities. Post-Modern Algebra is an excellent primary or supplementary text for graduate-level algebra courses. It is also an extremely useful resource for professionals and researchers in many areas who must tackle abstract, linear, or universal algebra in the course of their work.
暂无评论