For four decades the evolution of integrated circuits has followed Moore's law, according to which the number of transistors per square millimeter of silicon doubles every 18 months. At the same time transistors h...
详细信息
ISBN:
(数字)9780306479793
ISBN:
(纸本)9781402072444
For four decades the evolution of integrated circuits has followed Moore's law, according to which the number of transistors per square millimeter of silicon doubles every 18 months. At the same time transistors have become faster, making possible ever-increasing clock rates in digital circuits. This trend seems set to continue for at least another decade without slowing down. Thus, in the near future the processing power of digital circuits will continue to increase at an accelerating pace. For analog circuits the evolution of technology is not as beneficial. Thus, there is a trend to move signal processing functions from the analog domain to the digital one, which, besides allowing for a higher level of accuracy, provides savings in power consumption and silicon area, increases robustness, speeds up the design process, brings flexibility and programmability, and increases the possibilities for design reuse. In many applications the input and output signals of the system are inherently analog, preventing all-digital realizations; at the very least a conversion between analog and digital is needed at the - terfaces. Typically, moving the analog-digital boundary closer to the outside world increases the bit rate across it. In telecommunications systems the trend to boost bit rates is based on - ploying widerbandwidths and a higher signal-to-noise ratio. At the same time radio architectures in many applications are evolving toward software-defined radio, one of the main characteristics of which is the shifting of the anal- digital boundary closer to the antenna.
Design of Multi-Bit Delta-Sigma A/D Converters discusses both architecture and circuit design aspects of Delta-Sigma A/D converters, with a special focus on multi-bit implementations. The emphasis is on high-speed hig...
ISBN:
(数字)9780306480157
ISBN:
(纸本)9781402070785
Design of Multi-Bit Delta-Sigma A/D Converters discusses both architecture and circuit design aspects of Delta-Sigma A/D converters, with a special focus on multi-bit implementations. The emphasis is on high-speed high-resolution converters in CMOS for ADSL applications, although the material can also be applied for other specification goals and technologies. Design of Multi-Bit Delta-Sigma A/D Converters starts with a general introduction of the concepts of Delta-Sigma converters. A wide variety of architectures are discussed, ranging from single-loop to cascaded and various multi-bit topologies. These topologies are optimized to obtain stable converters with a high accuracy. A clear overview is provided of the maximum achievable performance of each topology, which allows a designer to select the optimal architecture for a certain specification. Special attention is paid to multi-bit architectures and possible solutions for the linearity problem of the DA converter in the feedback loop of converters. Several circuit design aspects of multi-bit Delta-Sigma converters are discussed. Various models are provided for a wide range of linear and non-linear circuit imperfections, which can degrade the performance of the converter. These models allow the designer to determine the required specifications for the different building blocks and form the basis of a systematic design procedure. The presented material is combined in a concluding chapter, which illustrates the systematic design procedure for two high-performance converters. Design of Multi-Bit Delta-Sigma A/D Converters provides a clear comparison of architectures and yields insight into the influence of the most important circuit non-idealities. It will allow you to design robust and high-performance Delta-Sigma AD converters in a shorter time. It is essential reading for analog design engineers and researchers in the field of AD converters and it is also suitable as a text for an advanced course on the subject.
暂无评论