关键词:
无人平台
质心干扰
箔条干扰
末端防御
多智能体强化学习
电子对抗
摘要:
无人平台箔条质心干扰是导弹末端防御的重要手段,其在平台机动和箔条发射等方面的智能决策能力是决定战略资产能否保护成功的重要因素。针对目前基于机理模型的计算分析和基于启发式算法的空间探索等决策方法存在的智能化程度低、适应能力差和决策速度慢等问题,提出基于多智能体深度强化学习的箔条干扰末端防御动态决策方法:对多平台协同进行箔条干扰末端防御的问题进行定义并构建仿真环境,建立导弹制导与引信模型、无人干扰平台机动模型、箔条扩散模型和质心干扰模型;将质心干扰决策问题转化为马尔科夫决策问题,构建决策智能体,定义状态、动作空间并设置奖励函数;通过多智能体近端策略优化算法对决策智能体进行训练。仿真结果显示,使用训练后的智能体进行决策,相比多智能体深度确定性策略梯度算法,训练时间减少了85.5%,资产保护成功率提升了3.84倍,相比遗传算法,决策时长减少了99.96%,资产保护成功率增加了1.12倍。