关键词:
多目标试卷生成
深度知识追踪
Q网络
矩阵分解
矩阵补全
摘要:
针对现有的试卷生成技术存在过多关注生成试卷的难易程度,而忽略了其他相关目标,例如质量、分数分布和技能覆盖范围的问题,提出一种强化学习和矩阵补全引导的多目标试卷生成方法,以优化试卷生成领域的特定目标。首先,运用深度知识追踪方法对学生之间的交互信息和响应日志进行建模以获取学生群体的技能熟练程度;其次,运用矩阵分解和矩阵补全方法对学生未做的习题进行得分预测;最后,基于多目标试卷生成策略,为提升Q网络的更新效率,设计一个Exam Q-Network函数逼近器以自动地选择合适的问题集来更新试卷组成。实验结果表明,相较于DEGA(Diseased-Enhanced Genetic Algorithm)、SSA-GA(Sparrow Search Algorithm-Genetic Algorithm)等模型,在试卷难度、合理性、准确性这3个指标上验证了所提模型在解决试卷生成场景的多重困境方面上效果显著。