咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Sparse Representation, Modelin... 收藏

Sparse Representation, Modeling and Learning in Visual Recognition: Theory, Algorithms and Applications

丛 书 名:Advances in Computer Vision and Pattern Recognition

版本说明:1

作     者:Hong Cheng (auth.) 

I S B N:(纸本) 9781447167136;9781447167143 

出 版 社:Springer-Verlag London 

出 版 年:2015年

页      数:259页

主 题 词:Computer vision. Visual perception. Image processing. Signal processing Digital techniques Mathematics. 

学科分类:08[工学] 080203[工学-机械设计及理论] 0802[工学-机械工程] 

摘      要:This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: describes sparse recovery approaches, robust and efficient sparse representation, and large-scale visual recognition; covers feature representation and learning, sparsity induced similarity, and sparse representation and learning-based classifiers; discusses low-rank matrix approximation, graphical models in compressed sensing, collaborative representation-based classification, and high-dimensional nonlinear learning; includes appendices outlining additional computer programming resources, and explaining the essential mathematics required to understand the book.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分