咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >How Fuzzy Concepts Contribute ... 收藏

How Fuzzy Concepts Contribute to Machine Learning

丛 书 名:Studies in Fuzziness and Soft Computing

版本说明:1st ed. 2022

作     者:Mahdi Eftekhari Adel Mehrpooya Farid Saberi-Movahed Vicenç Torra 

I S B N:(纸本) 9783030940652 

出 版 社:Springer International Publishing 

出 版 年:2022年

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 081104[工学-模式识别与智能系统] 08[工学] 070104[理学-应用数学] 0835[工学-软件工程] 0701[理学-数学] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

摘      要:This book introduces some contemporary approaches on the application of fuzzy and hesitant fuzzy sets in machine learning tasks such as classification, clustering and dimension reduction. Many situations arise in machine learning algorithms in which applying methods for uncertainty modeling and multi-criteria decision making can lead to a better understanding of algorithms behavior as well as achieving good performances. Specifically, the present book is a collection of novel viewpoints on how fuzzy and hesitant fuzzy concepts can be applied to data uncertainty modeling as well as being used to solve multi-criteria decision making challenges raised in machine learning problems. Using the multi-criteria decision making framework, the book shows how different algorithms, rather than human experts, are employed to determine membership degrees. The book is expected to bring closer the communities of pure mathematicians of fuzzy sets and data scientists.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分