咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Data Orchestration in Deep Lea... 收藏

Data Orchestration in Deep Learning Accelerators

丛 书 名:Synthesis Lectures on Computer Architecture

版本说明:1

作     者:Tushar Krishna Hyoukjun Kwon Ananda Samajdar Angshuman Parashar Michael Pellauer 

I S B N:(纸本) 9783031006395 

出 版 社:Springer Cham 

出 版 年:1000年

页      数:XVII, 146页

主 题 词:Circuits and Systems Processor Architectures 

摘      要:This Synthesis Lecture focuses on techniques for efficient data orchestration within DNN accelerators. The End of Moore s Law, coupled with the increasing growth in deep learning and other AI applications has led to the emergence of custom Deep Neural Network (DNN) accelerators for energy-efficient inference on edge devices. Modern DNNs have millions of hyper parameters and involve billions of computations; this necessitates extensive data movement from memory to on-chip processing engines. It is well known that the cost of data movement today surpasses the cost of the actual computation; therefore, DNN accelerators require careful orchestration of data across on-chip compute, network, and memory elements to minimize the number of accesses to external DRAM. The book covers DNN dataflows, data reuse, buffer hierarchies, networks-on-chip, and automated design-space exploration. It concludes with data orchestration challenges with compressed and sparse DNNs and future trends. The target audience is students, engineers, and researchers interested in designing high-performance and low-energy accelerators for DNN inference.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分