咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Core Concepts in Data Analysis... 收藏

Core Concepts in Data Analysis: Summarization, Correlation and Visualization

丛 书 名:Undergraduate Topics in Computer Science

版本说明:2011

作     者:Boris Mirkin 

I S B N:(纸本) 9780857292865 

出 版 社:Springer London 

出 版 年:2011年

摘      要:Core Concepts in Data Analysis: Summarization, Correlation and Visualization provides in-depth descriptions of those data analysis approaches that either summarize data (principal component analysis and clustering, including hierarchical and network clustering) or correlate different aspects of data (decision trees, linear rules, neuron networks, and Bayes rule).Boris Mirkin takes an unconventional approach and introduces the concept of multivariate data summarization as a counterpart to conventional machine learning prediction schemes, utilizing techniques from statistics, data analysis, data mining, machine learning, computational intelligence, and information *** following from his in-depth analysis of the models underlying summarization techniques are introduced, and applied to challenging issues such as the number of clusters, mixed scale data standardization, interpretation of the solutions, as well as relations between seemingly unrelated concepts: goodness-of-fit functions for classification trees and data standardization, spectral clustering and additive clustering, correlation and visualization of contingency data. The mathematical detail is encapsulated in the so-called formulation parts, whereas most material is delivered through presentation parts that explain the methods by applying them to small real-world data sets; concise computation parts inform of the algorithmic and coding issues. Four layers of active learning and self-study exercises are provided: worked examples, case studies, projects and questions.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分