咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Data Assimilation: Methods, Al... 收藏

Data Assimilation: Methods, Algorithms, and Applications

丛 书 名:Fundamentals of Algorithms

作     者:Mark Asch Marc Bocquet Ma?lle Nodet 

I S B N:(纸本) 9781611974539 

出 版 社:Society for Industrial and Applied Mathematics 

出 版 年:2016年

主 题 词:data assimilation inverse problems Kalman filters adjoint methods ensemble methods 

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

摘      要:Data assimilation is an approach that combines observations and model output, with the objective of improving the latter. This book places data assimilation into the broader context of inverse problems and the theory, methods, and algorithms that are used for their solution. It provides a framework for, and insight into, the inverse problem nature of data assimilation, emphasizing “why and not just “how. Methods and diagnostics are emphasized, enabling readers to readily apply them to their own field of study. Readers will find a comprehensive guide that is accessible to nonexperts;numerous examples and diverse applications from a broad range of domains, including geophysics and geophysical flows, environmental acoustics, medical imaging, mechanical and biomedical engineering, economics and finance, and traffic control and urban planning; andthe latest methods for advanced data assimilation, combining variational and statistical approaches.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分