咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Deep Learning and Convolutiona... 收藏

Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics

丛 书 名:Advances in Computer Vision and Pattern Recognition

版本说明:1

作     者:Le Lu Xiaosong Wang Gustavo Carneiro Lin Yang 

I S B N:(纸本) 9783030139681;9783030139711 

出 版 社:Springer Cham 

出 版 年:2019年

页      数:XI, 461页

主 题 词:Image Processing and Computer Vision Imaging / Radiology Artificial Intelligence Mathematical Models of Cognitive Processes and Neural Networks 

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

摘      要:This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory.;The book’s chief features are as follows: It highlights how deep neural networks can be used to address new questions and protocols, and to tackle current challenges in medical image computing; presents a comprehensive review of the latest research and literature; and describes a range of different methods that employ deep learning for object or landmark detection tasks in 2D and 3D medical imaging. In addition, the book examines a broad selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to text and image deep embedding for a large-scale chest x-ray image database; and discusses how deep learning relational graphs can be used to organize a sizable collection of radiology findings from real clinical practice, allowing semantic similarity-based retrieval.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分