咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Broad Learning Through Fusions 收藏

Broad Learning Through Fusions

版本说明:1

作     者:Jiawei Zhang Philip S. Yu 

I S B N:(纸本) 9783030125271;9783030125301 

出 版 社:Springer Cham 

出 版 年:1000年

页      数:XV, 419页

主 题 词:Data Mining and Knowledge Discovery Artificial Intelligence Data Structures Information Systems Applications (incl. Internet) Probability and Statistics in Computer Science 

摘      要:This book offers a clear and comprehensive introduction to broad learning, one of the novel learning problems studied in data mining and machine learning. Broad learning aims at fusing multiple large-scale information sources of diverse varieties together, and carrying out synergistic data mining tasks across these fused sources in one unified analytic. This book takes online social networks as an application example to introduce the latest alignment and knowledge discovery algorithms. Besides the overview of broad learning, machine learning and social network basics, specific topics covered in this book include network alignment, link prediction, community detection, information diffusion, viral marketing, and network embedding.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分