咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Deep Learning Approaches to Te... 收藏

Deep Learning Approaches to Text Production

用于文本生成的深度学习方法

丛 书 名:Synthesis lectures on human language technologies

版本说明:1

作     者:Shashi Narayan Claire Gardent 

I S B N:(纸本) 9781681737607;9781681737584 

出 版 社:Morgan & Claypool 

出 版 年:2020年

页      数:xxiv, 175 pages :页

主 题 词:Text processing (Computer science).Neural networks (Computer science).Machine learning 

学科分类:12[管理学] 07[理学] 08[工学] 071102[理学-系统分析与集成] 0711[理学-系统科学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 081203[工学-计算机应用技术] 0835[工学-软件工程] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 081103[工学-系统工程] 

摘      要:Text production has many applications. It is used, for instance, to generate dialogue turns from dialogue moves, verbalise the content of knowledge bases, or generate English sentences from rich linguistic representations, such as dependency trees or abstract meaning representations. Text production is also at work in text-to-text transformations such as sentence compression, sentence fusion, paraphrasing, sentence (or text) simplification, and text summarisation. This book offers an overview of the fundamentals of neural models for text production. In particular, we elaborate on three main aspects of neural approaches to text production: how sequential decoders learn to generate adequate text, how encoders learn to produce better input representations, and how neural generators account for task-specific objectives. Indeed, each text-production task raises a slightly different challenge (e.g, how to take the dialogue context into account when producing a dialogue turn, how to detect and merge relevant information when summarising a text, or how to produce a well-formed text that correctly captures the information contained in some input data in the case of data-to-text generation). We outline the constraints specific to some of these tasks and examine how existing neural models account for them. More generally, this book considers text-to-text, meaning-to-text, and data-to-text transformations. It aims to provide the audience with a basic knowledge of neural approaches to text production and a roadmap to get them started with the related work. The book is mainly targeted at researchers, graduate students, and industrials interested in text production from different forms of inputs.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分