咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Advances in Probabilistic Grap... 收藏

Advances in Probabilistic Graphical Models

丛 书 名:Studies in Fuzziness and Soft Computing

版本说明:2007

作     者:Peter Lucas José A. Gámez Antonio Salmerón Cerdan 

I S B N:(纸本) 9783540689942 

出 版 社:Springer Berlin Heidelberg 

出 版 年:2007年

摘      要:In recent years considerable progress has been made in the area of probabilistic graphical models, in particular Bayesian networks and influence diagrams. Probabilistic graphical models have become mainstream in the area of uncertainty in artificial intelligence;contributions to the area are coming from computer science, mathematics, statistics and engineering. This carefully edited book brings together in one volume some of the most important topics of current research in probabilistic graphical modelling, learning from data and probabilistic inference. This includes topics such as the characterisation of conditional independence, the sensitivity of the underlying probability distribution of a Bayesian network to variation in its parameters, the learning of graphical models with latent variables and extensions to the influence diagram formalism. In addition, attention is given to important application fields of probabilistic graphical models, such as the control of vehicles, bioinformatics and medicine.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分