咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >LONG TIME BEHAVIOR OF SOLUTION... 收藏

LONG TIME BEHAVIOR OF SOLUTIONS OF DAVEY-STEWARTSON EQUATIONS

LONG TIME BEHAVIOR OF SOLUTIONS OF DAVEY-STEWARTSON EQUATIONS

作     者:郭柏灵 李用生 

作者机构:Institute of Applied Physics and Computational Mathematics Beijing China Department of Mathematics Huazhong University of Science and Technology Wuhan China 

出 版 物:《Acta Mathematicae Applicatae Sinica》 (应用数学学报(英文版))

年 卷 期:2001年第17卷第1期

页      面:86-97页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:This project is supported Supported by National Natural Science Foundation of China 

主  题:Davey-Stewartson equations bounded absorbing set global attractor Hausdorff dimension fractal dimension 

摘      要:In the present paper we study the long time behavior of solutions to the Davey-Stewartson system in the Banach spaces. We make use of the properties of the semigroup generated by the linear principal operator in Lp() and prove that the Davey-Stewartson system possesses a compact global attractor Ap in Lp(). Furthermore, one show that the attractor is in fact independent of p and prove the attractor has finite Hausdorff and fractal dimensions.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分