版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Chubu Univ Matsumotocho 1200 Kasugai Aichi 4878501 Japan OMRON SINIC X Corp Bunkyo Ku Hongo 5-24-5 Tokyo 1130033 Japan
出 版 物:《IEEE ROBOTICS AND AUTOMATION LETTERS》 (IEEE Robot. Autom.)
年 卷 期:2021年第6卷第2期
页 面:287-294页
核心收录:
学科分类:0808[工学-电气工程] 08[工学] 0811[工学-控制科学与工程]
主 题:Forecasting Videos Trajectory Vehicle dynamics Surveillance Estimation Spatiotemporal phenomena Computer vision for transportation deep learning for visual perception surveillance robotic systems
摘 要:Forecasting human activities observed in videos is a long-standing challenge in computer vision and robotics and is also beneficial for various real-world applications such as mobile robot navigation and drone landing. In this work, we present a new forecasting task called crowd density forecasting. Given a video of a crowd captured by a surveillance camera, our goal is to predict how the density of the crowd will change in unseen future frames. To address this task, we developed the patch-based density forecasting networks (PDFNs), which directly forecasts crowd density maps of future frames instead of trajectories of each moving person in the crowd. The PDFNs represent crowd density maps based on spatially or spatiotemporally overlapping patches and learn a simple density dynamics of fewer people in each patch. Doing so allows us to efficiently deal with diverse and complex crowd density dynamics observed when input videos involve a variable number of crowds moving independently. Experimental results with several public datasets of surveillance videos demonstrate the effectiveness of our approaches compared with state-of-the-art forecasting methods.