版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Nove de Julho Univ UNINOVE Informat & Knowledge Management Grad Program BR-01525000 Sao Paulo Brazil Nove de Julho Univ UNINOVE Ind Engn Grad Program BR-01525000 Sao Paulo Brazil Univ Sao Paulo EPUSP Polytech Sch BR-05508010 Sao Paulo Brazil
出 版 物:《SENSORS》 (传感器)
年 卷 期:2020年第20卷第24期
页 面:7242页
核心收录:
学科分类:0710[理学-生物学] 071010[理学-生物化学与分子生物学] 0808[工学-电气工程] 07[理学] 0804[工学-仪器科学与技术] 0703[理学-化学]
主 题:autoregressive forecasting model lambda architecture partial discharges power hydrogenerators real-time data processing
摘 要:The prediction of partial discharges in hydrogenerators depends on data collected by sensors and prediction models based on artificial intelligence. However, forecasting models are trained with a set of historical data that is not automatically updated due to the high cost to collect sensors data and insufficient real-time data analysis. This article proposes a method to update the forecasting model, aiming to improve its accuracy. The method is based on a distributed data platform with the lambda architecture, which combines real-time and batch processing techniques. The results show that the proposed system enables real-time updates to be made to the forecasting model, allowing partial discharge forecasts to be improved with each update with increasing accuracy.