版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Faculty of Computer and Software Engineering Huaiyin Institute of Technology Huai'an Jiangsu 223003 China
出 版 物:《Journal of Physics: Conference Series》
年 卷 期:2020年第1651卷第1期
摘 要:With the popularity of the Internet and e-commerce, the sentiment analysis of text can help users to quickly and accurately obtain effective information they are interested in from massive product reviews to purchase satisfactory products. In this paper, a sentiment analysis system for product reviews was designed based on deep learning, and the digital and electronic products on Jingdong Mall with at least 100,000 reviews were crawled as the training data set. After data pre-processing operations such as word segmentation and removal of stop words for product reviews to remove useless features, the feature vectors were constructed based on the bag of words model and word2vec method, and then three classification algorithms, namely LSTM, Naive Bayes and logistic regression were used to model reviews. The LSTM algorithm is significantly superior to Naive Bayes and logistic regression algorithm in the training stage, and provides a reliable reference for the analysis of product reviews.