咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Accurate discretization of por... 收藏

Accurate discretization of poroelasticity without Darcy stability Stokes-Biot stability revisited

没有 Darcy 稳定性的 poroelasticity 的精确 discretization

作     者:Mardal, Kent-Andre Rognes, Marie E. Thompson, Travis B. 

作者机构:Univ Oslo Dept Math Oslo Norway Simula Res Lab Fornebu Norway Simula Res Lab Dept Sci Comp & Numer Anal Fornebu Norway Univ Oxford Math Inst Oxford England 

出 版 物:《BIT NUMERICAL MATHEMATICS》 (BIT数值数学)

年 卷 期:2021年第61卷第3期

页      面:941-976页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 070105[理学-运筹学与控制论] 0835[工学-软件工程] 0701[理学-数学] 

基  金:Research Council of Norway Research Council of Norway under the FRINATEK Young Research Talents Programme [250731/F20] EPSRC [EP/R020205/1] Funding Source: UKRI 

主  题:Poroelasticity Biot’ s equations Mixed method Darcy stability Stokes– Biot stability 

摘      要:In this manuscript we focus on the question: what is the correct notion of Stokes-Biot stability? Stokes-Biot stable discretizations have been introduced, independently by several authors, as a means of discretizing Biot s equations of poroelasticity;such schemes retain their stability and convergence properties, with respect to appropriately defined norms, in the context of a vanishing storage coefficient and a vanishing hydraulic conductivity. The basic premise of a Stokes-Biot stable discretization is: one part Stokes stability and one part mixed Darcy stability. In this manuscript we remark on the observation that the latter condition can be generalized to a wider class of discrete spaces. In particular: a parameter-uniform inf-sup condition for a mixed Darcy sub-problem is not strictly necessary to retain the practical advantages currently enjoyed by the class of Stokes-Biot stable Euler-Galerkin discretization schemes.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分