版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:重庆邮电大学数据工程与可视计算重点实验室重庆400065
出 版 物:《江苏大学学报(自然科学版)》 (Journal of Jiangsu University:Natural Science Edition)
年 卷 期:2021年第42卷第3期
页 面:309-317页
学科分类:1305[艺术学-设计学(可授艺术学、工学学位)] 13[艺术学] 081104[工学-模式识别与智能系统] 08[工学] 0804[工学-仪器科学与技术] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程]
基 金:国家自然科学基金青年科学基金资助项目(61806033) 重庆市自然科学基金资助面上项目(cstc2019jcyj-msxmX0021)
摘 要:为了确定多标签分类器链方法的链序以及挖掘出高阶标签关联性,提出了一种基于梯度提升的多标签分类器链方法.给出了GBCC整体框架,通过一种预剪枝策略对单一标签进行梯度提升,在此过程中利用标签置信度和误差评价分数确定最佳链序,并在各个标签间进行标签传递和特征传递,以挖掘高阶标签关联性.将所提出方法与4种分类器链方法(CC、ECC、OCC、EOCC)以及4种多标签分类方法(BR、HOMER、MLKNN、CLR)在bibtex、Corel5k等12个多标签数据集上进行对比试验.结果表明:新方法在各个评价指标(micro-F1、macro-F1、Hamming loss、One-error)下不仅能够有效提升预测性能,而且能够保持分类器链方法的简单灵活性.