咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >MHCPDP: multi-source heterogen... 收藏

MHCPDP: multi-source heterogeneous cross-project defect prediction via multi-source transfer learning and autoencoder

MHCPDP : 多来源经由多来源转移学习和 autoencoder 的异构的跨工程的缺点预言

作     者:Wu, Jie Wu, Yingbo Niu, Nan Zhou, Min 

作者机构:Chongqing Univ Sch Software Engn Chongqing Peoples R China Univ Cincinnati Dept Elect Engn & Comp Sci Cincinnati OH USA 

出 版 物:《SOFTWARE QUALITY JOURNAL》 (软件质量杂志)

年 卷 期:2021年第29卷第2期

页      面:405-430页

核心收录:

学科分类:08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:National Key Research and Development Project [2019YFB1706101] Science-Technology Foundation of Chongqing, China [cstc2019jscx-mbdx0083] 

主  题:Autoencoder Heterogeneous cross-project defect prediction Multi-source transfer learning Modified autoencoder 

摘      要:Heterogeneous cross-project defect prediction (HCPDP) is aimed at building a defect prediction model for the target project by reusing datasets from source projects, where the source project datasets and target project dataset have different features. Most existing HCPDP methods only remove redundant or unrelated features without exploring the underlying features of cross-project datasets. Additionally, when the transfer learning method is used in HCPDP, these methods ignore the negative effect of transfer learning. In this paper, we propose a novel HCPDP method called multi-source heterogeneous cross-project defect prediction (MHCPDP). To reduce the gap between the target datasets and the source datasets, MHCPDP uses the autoencoder to extract the intermediate features from the original datasets instead of simply removing redundant and unrelated features and adopts a modified autoencoder algorithm to make instance selection for eliminating irrelevant instances from the source domain datasets. Furthermore, by incorporating multiple source projects to increase the number of source datasets, MHCPDP develops a multi-source transfer learning algorithm to reduce the impact of negative transfers and upgrade the performance of the classifier. We comprehensively evaluate MHCPDP on five open source datasets;our experimental results show that MHCPDP not only has significant improvement in two performance metrics but also overcomes the shortcomings of the conventional HCPDP methods.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分