咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Distribution-free learning the... 收藏

Distribution-free learning theory for approximating submanifolds from reptile motion capture data

为从爬行动物运动俘获数据的接近的 submanifolds 的没有分发的学习理论

作     者:Powell, Nathan Kurdila, Andrew J. 

作者机构:Virginia Tech Dept Mech Engn Blacksburg VA 24060 USA 

出 版 物:《COMPUTATIONAL MECHANICS》 (计算力学)

年 卷 期:2021年第68卷第2期

页      面:337-356页

核心收录:

学科分类:08[工学] 0701[理学-数学] 0801[工学-力学(可授工学、理学学位)] 

主  题:Theoretical and Applied Mechanics Computational Science and Engineering Classical and Continuum Physics 

摘      要:This paper describes the formulation and experimental testing of an estimation of submanifold models of animal motion. It is assumed that the animal motion is supported on a configuration manifold, Q, and that the manifold is homeomorphic to a known smooth, Riemannian manifold, S. Estimation of the configuration submanifold is achieved by finding an unknown mapping, gamma, from S to Q. The overall problem is cast as a distribution-free learning problem over the manifold of measurements. This paper defines sufficient conditions that show that the rates of convergence in L-mu(2)(S) of approximations of gamma correspond to those known for classical distribution-free learning theory over Euclidean space. This paper concludes with a study and discussion of the performance of the proposed method using samples from recent reptile motion studies.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分