版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Materials Science Program University of Wisconsin Madison USA Department of Chemical Engineering University of Wisconsin Madison USA
出 版 物:《MRS Online Proceedings Library》
年 卷 期:2012年第367卷第1期
页 面:293-298页
摘 要:Atomic force microscopy (AFM) has been used to investigate the atomic-scale mechanisms of growth of GaAs by metal organic vapor phase epitaxy (MOVPE). The influence of impurities such as silicon, oxygen and carbon on the small-scale periodic structure as well as on the large-scale features has been studied. The growth front of GaAs epitaxial films grown on vicinal GaAs (100) substrates exhibits periodic structure except for the Si doped GaAs grown on semi-insulating vicinal GaAs (100) substrates. The periodicity on the surface breaks down when oxygen, silicon or carbon concentration exceeds 1018cm−3. These impurities may preferentially attach at the step edges resulting in reduction of the mobility of the steps. At higher impurity concentrations, the motion of the growth front gets pinned on the surface resulting in a disruption of the step flow mode of growth. The wide terraces on Si doped GaAs grown on semi-insulating substrate is proposed as the kinetic limited step bunching during the step flow mode of growth.