版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:School of Mechanical EngineeringTiangong UniversityTianjin 300387China Tianjin Modern Electromechanical Equipment Technology Key LaboratoryTianjin 300387China
出 版 物:《Chinese Journal of Mechanical Engineering》 (中国机械工程学报(英文版))
年 卷 期:2021年第34卷第4期
页 面:121-136页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 080401[工学-精密仪器及机械] 0804[工学-仪器科学与技术] 080402[工学-测试计量技术及仪器] 0838[工学-公安技术] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:Supported by National Natural Science Foundation of China and Civil Aviation Administration of China Joint Funded Project(Grant No.U1733108) Key Project of Tianjin Science and Technology Support Program(Grant No.16YFZCSY00860)
主 题:Fault diagnosis Feature fusion Information entropy Deep autoencoder Deep belief network
摘 要:For a single-structure deep learning fault diagnosis model,its disadvantages are an insufficient feature extraction and weak fault classification *** paper proposes a multi-scale deep feature fusion intelligent fault diagnosis method based on information ***,a normal autoencoder,denoising autoencoder,sparse autoencoder,and contractive autoencoder are used in parallel to construct a multi-scale deep neural network feature extraction structure.A deep feature fusion strategy based on information entropy is proposed to obtain low-dimensional features and ensure the robustness of the model and the quality of deep ***,the advantage of the deep belief network probability model is used as the fault classifier to identify the *** effectiveness of the proposed method was verified by a gearbox *** results show that,compared with traditional and existing intelligent fault diagnosis methods,the proposed method can obtain representative information and features from the raw data with higher classification accuracy.