版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Department of Computer Science and Engineering Amity University Noida India Department of Computer Application Tecnia Institute of Advanced Studies New Delhi India
出 版 物:《Recent Advances in Computer Science and Communications》 (Recent Advances in Computer Science and Communications)
年 卷 期:2021年第14卷第2期
页 面:477-488页
核心收录:
主 题:Testing
摘 要:Background: In today’s era, modifications in a software is a common requirement by customers. When changes are made to existing software, re-testing of all the test cases is required to ensure that the newly introduced changes do not have any unwanted effect on the behavior of the software. However, re-testing of all the test cases would not only be time consuming but also expensive. Therefore, there is a need for a technique that reduces the number of tests to be performed. Regression testing is one of the ways to reduce the number of test cases. Selection technique is one such method which seeks to identify the test cases that are relevant to some set of recent changes. Objective: It is evident that most of the studies have used different selection techniques and have focused only on one parameter for achieving reduced test suite size without compromising the performance of regression testing. However, to the best of our knowledge, no study has taken two or more parameters of cov-erage, and/or execution time in a single testing. This paper presents a hybrid technique that combines both regression test selection using slicing technique and minimization of test cases using modified firefly algorithm with combination of parameters coverage and execution time in a single testing. Methods: A hybrid technique has been described that combines both selection and minimization. Selection of test cases is based upon slicing technique while minimization is done using firefly algorithm. Hybrid technique selects and minimizes the test suite using information on statement coverage and execution time. Results: The proposed technique gives 43.33% much superior result as compared to the other hybrid approach in terms of significantly reduced number of test cases. It shows that the resultant test cases were effective enough to cover 100% of the statements, for all the programs. The proposed technique was also tested on four different programs namely Quadratic, Triangle, Next day, Co