咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >An exponential Diophantine equ... 收藏

An exponential Diophantine equation related to the sum of powers of two consecutive terms of a Lucas sequence and x-coordinates of Pell equations

作     者:Erazo, Harold S. Gomez, Carlos A. 

作者机构:Inst Nacl Matemat Pura & Aplicada Estr Dona Castorina 110 Rio De Janeiro Brazil Univ Valle Dept Matemat Calle 13 100-00 Cali Colombia 

出 版 物:《PERIODICA MATHEMATICA HUNGARICA》 (匈牙利数学学报)

年 卷 期:2021年第83卷第2期

页      面:165-184页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:CAPES (Universidad del Valle) 

主  题:Pell equation Fibonacci numbers Lower bounds for linear forms in logarithms LLL algorithm 

摘      要:For the Fibonacci sequence the identity F-n(2) + F-n+1(2) = F2n+1 holds for all n = 0. Let X := (X-l)(l = 1) be the sequence of X-coordinates of the positive integer solutions (X, Y) of the Pell equation X-2 - dY(2) = +/- 1 corresponding to a nonsquare integer d 1. In this paper, we investigate all positive nonsquare integers d for which there are at least two positive integers X and X of X having a representation as the sum of xth powers of two consecutive terms of a Lucas sequence. Then we solve this problem for Fibonacci numbers.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分