版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Inst Nacl Matemat Pura & Aplicada Estr Dona Castorina 110 Rio De Janeiro Brazil Univ Valle Dept Matemat Calle 13 100-00 Cali Colombia
出 版 物:《PERIODICA MATHEMATICA HUNGARICA》 (匈牙利数学学报)
年 卷 期:2021年第83卷第2期
页 面:165-184页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:CAPES (Universidad del Valle)
主 题:Pell equation Fibonacci numbers Lower bounds for linear forms in logarithms LLL algorithm
摘 要:For the Fibonacci sequence the identity F-n(2) + F-n+1(2) = F2n+1 holds for all n = 0. Let X := (X-l)(l = 1) be the sequence of X-coordinates of the positive integer solutions (X, Y) of the Pell equation X-2 - dY(2) = +/- 1 corresponding to a nonsquare integer d 1. In this paper, we investigate all positive nonsquare integers d for which there are at least two positive integers X and X of X having a representation as the sum of xth powers of two consecutive terms of a Lucas sequence. Then we solve this problem for Fibonacci numbers.