版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Chinese Acad Agr Sci Inst Agr Resources & Reg Planning Minist Agr & Rural Affairs Key Lab Plant Nutr & Fertilizer 12 Zhongguancun South St Beijing 100081 Peoples R China
出 版 物:《JOURNAL OF HAZARDOUS MATERIALS》 (危险物资杂志)
年 卷 期:2021年第416卷
页 面:126079-126079页
核心收录:
学科分类:0830[工学-环境科学与工程(可授工学、理学、农学学位)] 08[工学]
基 金:National Natural Science Foundation of China National Key Research and Development Program of China [2020YFC1806300-04]
主 题:Metabolic profiles Amino acid secretion Soil cadmium availability Paddy soil Soil pe plus pH variation
摘 要:Periodic flooding in paddy soils impacts redox behavior and induces variations in pe+pH levels. Manganese (Mn) is capable of reducing cadmium (Cd) uptake by rice. However, the processes involved in how Mn alters Cd mobilization under different pe+pH environments remain poorly understood. To investigate the mechanisms of Mn-mediated soil Cd-stabilization and subsequent inhibition of Cd uptake from flooded soils, we examined Cd immobilization in soil pot incubations, transcriptional changes in Cd-transport genes, and metabolomic analyses of roots and rhizosphere soils with or without Mn application. We found a decrease in extractable Cd concentration largely depended on irrigation-associated low pe+pH, exogenous Mn enhancement of Fe-Mn (oxyhydro) oxide-mediated Cd transformation, and Cd deposition in rice Fe/Mn plaques. Mn application led to striking effects on the expression of Cd-related genes eg. IRT, HMA, and NRAMP in rice root tissue. Exposure to Mn under variable pe+pH levels resulted in metabolic reprogramming of soil and rice roots. Mn induced amino acid synthesis in rice roots, leading to rhizosphere accumulation of free L-lysine, glycine, and glutamine, which can reportedly bind metal ions, forming complexes with Cd. Thus, secreted amino acids, low pe+pH, and free Mn can together comprise a multi-faceted approach to managing Cd toxicity in rice.