版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Key Laboratory of Data Engineering and Knowledge Engineering(Renmin University of China)Ministry of Education Beijing 100087China School of InformationRenmin University of ChinaBeijing 100087China
出 版 物:《Journal of Computer Science & Technology》 (计算机科学技术学报(英文版))
年 卷 期:2021年第36卷第3期
页 面:590-605页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:supported by the National Key Research&Develop Plan of China under Grant Nos.2017YFB1400700 and 2018YFB1004401 the National Natural Science Foundation of China under Grant Nos.61732006,61702522,61772536,61772537,62076245,and 62072460 Beijing Natural Science Foundation under Grant No.4212022
主 题:disambiguation partial label learning similarity and dissimilarity weak supervision
摘 要:Partial label learning is a weakly supervised learning framework in which each instance is associated with multiple candidate labels,among which only one is the ground-truth *** paper proposes a unified formulation that employs proper label constraints for training models while simultaneously performing *** existing partial label learning approaches that only leverage similarities in the feature space without utilizing label constraints,our pseudo-labeling process leverages similarities and differences in the feature space using the same candidate label constraints and then disambiguates noise *** experiments on artificial and real-world partial label datasets show that our approach significantly outperforms state-of-the-art counterparts on classification prediction.