版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Guangxi Normal Univ Guangxi Key Lab Multisource Informat Min & Secur 15 Yucai Rd Guilin 541004 Guangxi Peoples R China Northwest Normal Univ Coll Comp Sci & Engn 967 Anning East Rd Lanzhou 730070 Gansu Peoples R China Chinese Acad Sci Inst Comp Technol Key Lab Intelligent Informat Proc 6 Kexueyuan South Rd Beijing 100190 Peoples R China
出 版 物:《ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS》 (ACM Trans. Multimedia Comput. Commun. Appl.)
年 卷 期:2021年第17卷第2期
页 面:1–22页
核心收录:
学科分类:0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:National Natural Science Foundation of China [61966004, 61663004, 61866004, 61762078] Guangxi Natural Science Foundation [2019GXNSFDA245018, 2018GXNSFDA281009] Guangxi "Bagui Scholar" Teams for Innovation and Research Project Guangxi Talent Highland Project of Big Data Intelligence and Application Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing
主 题:Image captioning attention mechanism scene semantics encoder-decoder framework
摘 要:Most existing image captioning methods use only the visual information of the image to guide the generation of captions, lack the guidance of effective scene semantic information, and the current visual attention mechanism cannot adjust the focus intensity on the image. In this article, we first propose an improved visual attention model. At each timestep, we calculated the focus intensity coefficient of the attention mechanism through the context information of themodel, then automatically adjusted the focus intensity of the attention mechanism through the coefficient to extract more accurate visual information. In addition, we represented the scene semantic knowledge of the image through topic words related to the image scene, then added them to the language model. We used the attention mechanism to determine the visual information and scene semantic information that the model pays attention to at each timestep and combined them to enable the model to generate more accurate and scene-specific captions. Finally, we evaluated our model on Microsoft COCO (MSCOCO) and Flickr30k standard datasets. The experimental results show that our approach generates more accurate captions and outperforms many recent advanced models in various evaluation metrics.