版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:西安理工大学自动化与信息工程学院陕西西安710048 安康学院电子与信息工程学院陕西安康725000 西安理工大学自动化与信息工程学院陕西西安710048 西安理工大学自动化与信息工程学院陕西西安710048 包头师范学院信息科学与技术学院内蒙古包头014030 清华大学计算机科学与技术系北京100084
出 版 物:《电子学报》 (Acta Electronica Sinica)
年 卷 期:2021年第49卷第5期
页 面:879-886页
核心收录:
学科分类:0711[理学-系统科学] 07[理学] 08[工学] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程] 071102[理学-系统分析与集成] 081103[工学-系统工程]
主 题:智能交通 交通流预测 灰狼优化(GWO) BP神经网络 反向学习(OL)
摘 要:本文针对灰狼优化(Grey Wolf Optimizer,GWO)算法平衡全局探索和局部搜索能力的不足,提出了一种基于反向改进的灰狼算法(Opposition Learning Grey Wolf Optimizer,OLGWO),来优化预测模型的超参数,以提高其用于交通流预测的精度与鲁棒性.本算法在迭代过程中采用了反向学习策略,并引入了等级相关概念,主要通过计算普通狼与目标狼的Spearman相关系数,并根据其值来选择性地更新狼种群.实验先对12个标准测试函数对比了四种算法OLGWO、TGWO(Transformed Grey Wolf Optimizer)、GWO、PSO(Particle Swarm Optimization),得到了寻优均值和标准差,验证了OLGWO算法具有突出的性能优势;然后采用美国加州公路交通流数据,在不同缺失率下比较了四种算法优化的反向传播(Back Propagation,BP)网络模型,结果显示,OLGWO-BP模型预测精度比其它三种模型最高分别有1.95%、3.98%和11.07%的提升,同时表现出更好的稳定性.