咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >黎曼边界条件在高阶精度非结构有限体积方法中的验证与应用 收藏

黎曼边界条件在高阶精度非结构有限体积方法中的验证与应用

Verification and application of Riemann boundary condition on high-order unstructured finite volume methods

作     者:孔令发 刘伟 董义道 KONG Lingfa;LIU Wei;DONG Yidao

作者机构:国防科技大学空天科学学院长沙410073 

出 版 物:《空气动力学学报》 (Acta Aerodynamica Sinica)

年 卷 期:2021年第39卷第3期

页      面:21-32,I0001页

核心收录:

学科分类:07[理学] 070102[理学-计算数学] 0701[理学-数学] 

基  金:国家重大项目(GJXM92579) 

主  题:高阶精度非结构有限体积方法 弱施加边界条件 有限波模型 黎曼边界条件 无反射边界条件 制造解方法 

摘      要:黎曼边界条件是一种弱施加边界条件。通过引入有限波模型,对亚声速入口、出口以及远场边界可采用精确求解黎曼问题来统一处理,有效简化了此类边界条件的施加过程,避免了基于特征关系式与黎曼不变量的推导,并已在二阶精度非结构有限体积方法中取得了较好的数值表现。为进一步验证该边界条件的实用价值,将其推广至高阶精度非结构有限体积离散。通过基于制造解方法(Method of Manufactured Solutions, MMS)的流动、亚声速无黏圆柱绕流及添加初始高斯脉冲扰动的非定常流动这三类数值算例,分别检验了黎曼边界条件在高阶精度非结构有限体积求解器中的数值表现。从计算结果来看,施加黎曼边界条件不会破坏离散格式的设计精度,同时,相比基于一维黎曼不变量的无反射边界条件,黎曼边界条件的施加过程简便,且维持了较好的出口特性,为基于非结构有限体积方法的高精度数值模拟提供了一种更加简单有效的亚声速边界处理方式。

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分