版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Sorbonne Univ Lab Probabilites Stat & Modelisat Campus Pierre & Marie CurieTour 16-261er Etage F-75005 Paris France
出 版 物:《ELECTRONIC JOURNAL OF STATISTICS》 (Electron. J. Stat.)
年 卷 期:2021年第15卷第1期
页 面:1743-1782页
核心收录:
主 题:Consistency nonparametric regression rule-based algorithm data-dependent covering interpretable learning
摘 要:We introduce a procedure to generate an estimator of the regression function based on a data-dependent quasi-covering of the feature space. A quasi-partition is generated from the quasi-covering and the estimator predicts the conditional empirical expectation over the cells of the quasi-partition. We provide sufficient conditions to ensure the consistency of the estimator. Each element of the quasi-covering is labeled as significant or insignificant. We avoid the condition of cell shrinkage commonly found in the literature for data-dependent partitioning estimators. This reduces the number of elements in the quasi-covering. An important feature of our estimator is that it is interpretable. The proof of the consistency is based on a control of the convergence rate of the empirical estimation of conditional expectations, which is interesting in itself.