版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Qilu Univ Technol Shandong Acad Sci Dept Elect Engn & Automat Jinan 250353 Peoples R China
出 版 物:《ENERGY》 (能)
年 卷 期:2021年第234卷
页 面:121236-121236页
核心收录:
学科分类:0820[工学-石油与天然气工程] 08[工学] 0807[工学-动力工程及工程热物理]
基 金:Natural Science Foundation of Shandong Province [ZR2020QF064 ZR2020ME206]
主 题:Lithium-ion battery SOC estimation Particle swarm optimization algorithm Long short-term memory neural network
摘 要:State-of-charge (SOC) estimation of lithium-ion battery is one of the core functions of battery management system. In order to improve the estimation accuracy of SOC, this paper proposes a long shortterm memory neural network based on particle swarm optimization (PSO-LSTM). Firstly, the key parameters of LSTM are optimized by PSO algorithm, so that the data characteristics of lithium-ion battery can match the network topology. In addition, random noise is added to the input layer of PSO-LSTM neural network to improve the anti-interference ability of the network. Finally, experiments show that the proposed method can achieve accurate estimation under different conditions. The estimates based on PSO-LSTM converge to the real state-of-charge within an error of 0.5%. (c) 2021 Published by Elsevier Ltd.