版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Tsinghua Univ Tsinghua Shenzhen Int Grad Sch Tsinghua Berkeley Shenzhen Inst Shenzhen Peoples R China Tsinghua Univ Grad Sch Shenzhen Tsinghua Shenzhen Int Grad Sch Shenzhen Peoples R China
出 版 物:《IET IMAGE PROCESSING》 (IET影像处理)
年 卷 期:2020年第14卷第17期
页 面:4513-4519页
核心收录:
学科分类:0808[工学-电气工程] 1002[医学-临床医学] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:China Postdoctoral Science Foundation [2020M680556] National Natural Science Foundation of China Hylink Digital Solutions Co., Ltd. Shenzhen Science and Technology Project [JCYJ20180508152042002] Guangdong Special Support [2019TX05X187]
主 题:optical images wavefront sensors aberrations least squares approximations Zernike polynomials nonlinear programming light diffraction image resolution high-resolution optical imaging systems high dynamic range least-squares-based nonlinear optimisation method multiple phase-diversity images model-based phase diversity phase retrieval algorithm diffraction-limited imaging wavefront sensing Lederberg-Marquardt algorithm aberration Zernike polynomials Zernike coefficients
摘 要:In optical imaging systems, the aberration is an important factor that impedes realising diffraction-limited imaging. Accurate wavefront sensing and control play important role in modern high-resolution optical imaging systems nowadays. In this study, a simple model-based phase retrieval algorithm is proposed for accurate efficient wavefront sensing with high dynamic range. In the authors algorithm, a wavefront is represented by the Zernike polynomials, and the Zernike coefficients are solved by the least-squares-based non-linear optimisation method, i.e. the Lederberg-Marquardt algorithm, with multiple phase-diversity images. The numerical results show that the proposed algorithm is capable of retrieving wavefront with a large dynamic range up to seven wavelength and robust to noise. In comparison, the proposed algorithm is more efficient than the existing model-based technique and more accurate than existing Fourier - transformation-based iterative techniques.