版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:中国科学院成都计算机应用研究所成都610041 中国科学院大学北京100049
出 版 物:《计算机应用》 (journal of Computer Applications)
年 卷 期:2021年第41卷第6期
页 面:1828-1835页
学科分类:08[工学] 080203[工学-机械设计及理论] 0802[工学-机械工程]
基 金:中国科学院STS区域重点项目(KFJ-STS-QYZD-179)
主 题:超声心动图 深度学习 图像分割 空间分频 注意力机制
摘 要:针对医学超声影像噪点多、边界模糊,器官轮廓很难界定的问题,提出了一种基于空间分频的超声图像分割注意力网络(SFDA-Net)。首先,借助Octave卷积在整个网络中对图像实现了高、低频并行处理,从而获得更加多元的信息。然后,加入卷积块注意模块(CBAM),使图像特征恢复时更加关注有效信息,以减小分割目标整体区域的缺失。最后,使用FocalTverskyLoss作为目标函数,从而降低简单样本的权重并加强对困难样本的关注,以及降低各个类别间因像素误判而引入的误差。通过多组对比实验可知,SFDA-Net的参数量低于原UNet++,而分割精度提高了6.2个百分点,Dice得分提高了8.76个百分点,类别平均像素准确率(mPA)提升至84.09%,平均交并比(mIoU)提升至75.79%。SFDA-Net在降低参数量的同时稳步提高了网络性能,实现了更为准确的超声心动图分割。