咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Inclusion of Non-Conservative ... 收藏

Inclusion of Non-Conservative Forces in Geometric Integrators with Application to Orbit-Attitude Coupling

在有到联合的 OrbitAttitude 的申请的几何综合者的非保守的力量的包括

作     者:Bolatti, Dante A. de Ruiter, Anton H. J. 

作者机构:Ryerson Univ Toronto ON M5B 2K3 Canada Ryerson Univ Dept Aerosp Engn Toronto ON M5B 2K3 Canada 

出 版 物:《JOURNAL OF GUIDANCE CONTROL AND DYNAMICS》 (制导、控制和动力学杂志)

年 卷 期:2021年第44卷第7期

页      面:1266-1279页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 0804[工学-仪器科学与技术] 0825[工学-航空宇航科学与技术] 

基  金:Canada Research Chair program [950-230883] Ontario Graduate Scholarship (OGS) program 

主  题:Damping Coefficient Integration Algorithm Asteroids Atmospheric Drag Lagrange D'Alembert Principle Numerical Integration Numerical Simulation Convergence Analysis Runge Kutta Methods Solar Radiation 

摘      要:In this paper, a discretization method for incorporating nonconservative forces in a class of geometric numerical integrators known as variational integrators and Galerkin variational propagators is proposed. The proposed method does not require modification of the original integration algorithm used in conservative systems. First, the damped harmonic oscillator is used as benchmark for evaluating the proposed approach. Two more complex scenarios are presented next: one considering propagations in the two-body problem with drag forces, and another dealing with long-term translational propagations about small bodies considering orbit-attitude coupled force terms where the attitude is prescribed. Numerical experiments are performed, comparing results to a nominal analytical solution when it is available, or against a highly accurate propagated reference trajectory. The results in this paper show that including the nonconservative forces in the potential energy term for the discrete equations produces a very accurate discretization. This allows one to perform accurate and fast long-term numerical propagations with structure preserving variational algorithms, in scenarios where perturbations to the system can be modeled as nonconservative forces.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分