咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >一类密度依赖的生物入侵模型的周期行波解 收藏

一类密度依赖的生物入侵模型的周期行波解

Period Travelling Wave Solutions of a Density-Dependent Biological Invasion Model

作     者:刘园园 王勤龙 黄文韬 LIU Yuan-yuan;WANG Qin-long;HUANG Wen-tao

作者机构:广东科技学院基础部广东东莞523668 桂林电子科技大学数学与计算科学学院广西桂林541004 广西师范大学数学与统计学院广西桂林541004 

出 版 物:《安徽师范大学学报(自然科学版)》 (Journal of Anhui Normal University(Natural Science))

年 卷 期:2021年第44卷第3期

页      面:227-232页

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:国家自然科学基金项目(12061016) 广西自然科学基金重点项目(2020GXNSFAA159138) 

主  题:生物入侵 非线性模型 多重Hopf分支 行波解 

摘      要:研究了一类密度依赖迁移和具有Allee效应种群动态的单种群反应扩散型的非线性偏微分方程,通过行波变换将其转化为行波方程,利用计算机代数系统Mathematica计算得到其一个正平衡点处的前几个焦点量,由此研究其Hopf分支得到了两个极限环,从而进一步获得两个特殊的周期行波解,即孤立波解,它对应于生物入侵种群的传播模式研究,有一定的实际意义。

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分