版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:School of Optical-Electrical Information and Computer Engineering University of Shanghai for Science and Technology Shanghai China
出 版 物:《Cyber-Physical Systems》 (Cyber Phy. Sys.)
年 卷 期:2023年第9卷第1期
页 面:1-24页
核心收录:
学科分类:0303[法学-社会学] 0710[理学-生物学] 070207[理学-光学] 081203[工学-计算机应用技术] 08[工学] 0837[工学-安全科学与工程] 0835[工学-软件工程] 0803[工学-光学工程] 0836[工学-生物工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 0702[理学-物理学]
主 题:Surveys
摘 要:As one of the important applications of intelligent video surveillance, violent behaviour detection (VioBD) plays a crucial role in public security and safety. As a particular type of behaviour recognition, VioBD aims to identify whether the behaviours that occurred in the scene is aggressive, such as fighting and assault. To comprehensively analyse the current state and predict the future trend of VioBD research, we survey the existing approaches of VioBD in this work. First, we briefly introduce the basic principle and the challenges of VioBD;Then, we category the existing approaches according to their framework, including the traditional framework, end-to-end deep learning framework, and hybrid deep learning framework. Finally, we introduce the public datasets for evaluating the performance of VioBD approaches and compare their performances on these datasets. Besides, we also summarise the open problems in VioBD and predict its future trends. © 2021 Informa UK Limited, trading as Taylor & Francis Group.