版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:UAEU Geol Dept Coll Sci Al Ain U Arab Emirates Lulea Univ Technol Lulea Sweden Geol Survey Ethiopia Addis Ababa Ethiopia
出 版 物:《HELIYON》 (Heliyon)
年 卷 期:2021年第7卷第6期
页 面:e07440页
核心收录:
基 金:Research Office of United Arab Emirates University, (31S264) United Arab Emirates University, UAEU, (31S394) United Arab Emirates University, UAEU
主 题:Magnetotelluric Potential field 2D inversion Geothermal AMGA Low-enthalpy Al-Ain United Arab Emirates
摘 要:Geothermal manifestations (hot springs) emerge in the Al-Mubazzarah Geothermal Area (AMGA), Al-Ain city, Abu Dhabi Emirate, United Arab Emirates. This paper presents the application and results of a Magnetotelluric (MT) survey, which was carried out in 2017 at the AMGA geothermal field. The MT method was used to investigate the variations in the electrical conductivity beneath the AMGA. This study focuses on characterizing the patterns of subsurface electrical conductivity of the AMGA geothermal reservoir. Dimensionality analysis of the measured MT data indicate that 2D inversion is appropriate for the subsurface resistivity interpretation. The inversion results support a model consisting of three resistivity-defined layers;from top to bottom they are: (1) a shallow layer with resistivity ranging from 10 to 20 Omega m, representing recent alluvial and windblown deposits, (2) a second conductive layer with resistivities less than 10 Omega m, beneath the first layer. This layer is recognized as the Tertiary carbonate sequence in the region, (3) a deep, moderate to relatively high resistive zone, 10-30 Omega m beginning at 800 m depth and reaching 4 km depth in the northern part of the profile, representing Mesozoic basement rocks. The observed moderate to high resistivity zone (10-30 Omega m) in the 2D model may represent a region where the hot groundwaters originated (geothermal reservoir), with the hottest geothermal located at a depth greater than 4 km. The geothermal reservoir zone is also represented by a low to high density contrast and a low to moderate magnetic susceptibility, as indicated in the inverted potential field data models, and confirmed the existence of a north dipping major fault.