版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:South China Normal Univ Sch Math Sci Guangzhou Peoples R China Tianjin Univ Sch Math Tianjin 300354 Peoples R China Huawei Technol Investment Co Ltd Labs 2012 Future Network Theory Lab Shatin Hong Kong Peoples R China Hangzhou Dianzi Univ Dept Math Sch Sci Hangzhou 310018 Peoples R China Hong Kong Polytech Univ Dept Appl Math Hung Hom Kowloon Hong Kong Peoples R China Huawei Theory Res Lab Kowloon Hong Kong Peoples R China
出 版 物:《JOURNAL OF SCIENTIFIC COMPUTING》 (科学计算杂志)
年 卷 期:2021年第88卷第3期
页 面:65-65页
核心收录:
学科分类:08[工学] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:National Natural Science Foundation of China [11771405, 12071159] Guangdong Basic and Applied Basic Research Foundation [2020A1515010489] NSFC
主 题:Internet traffic tensor Tensor completion Triple tensor decomposition Optimization algorithm
摘 要:With the coming of high-speed network and 5G era, internet traffic data is crucial for various network tasks such as traffic engineering, capacity planning and anomaly detection. To explore the natural spatio-temporal structure of network flow, we use the novel triple decomposition of tensors to establish an optimization model with the spatio-temporal regularization for completing the internet traffic data. A Barzilai-Borwein gradient algorithm is designed for solving the spatio-temporal internet traffic tensor completion problem. We prove the convergence of this algorithm and analyze its convergence rate with the tool of the Kurdyka-Lojasiewicz property. Numerical experiments on Abilene and GeANT datasets report that the proposed tensor completion method is effective.