咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Josephson junction model with ... 收藏

Josephson junction model with cosine interference term: Analysis, microcontroller implementation, and network analysis

有余弦干扰术语的 Josephson 连接模型: 分析,微控制器实现,和网络分析

作     者:Ramadoss, Janarthanan Ngongiah, Isidore Komofor Chamgoue, Andre Cheage Mboupda Pone, Justin Roger Rajagopal, Karthikeyan Kingni, Sifeu Takougang 

作者机构:Chennai Inst Technol Ctr Artificial Intelligence Chennai 600069 Tamil Nadu India Univ Bamenda Fac Sci Dept Phys POB 39 Bamenda Cameroon Univ Ngaoundere Sch Geol & Min Engn POB 115 Meiganga Cameroon Univ Dschang Elect Engn Dept IUT FV Res Unit Automat & Appl Comp RU AIA POB 134 Bandjoun Cameroon Chennai Inst Technol Ctr Nonlinear Syst Chennai 600069 Tamil Nadu India Univ Maroua Fac Mines & Petr Ind Dept Mech Petr & Gas Engn POB 46 Maroua Cameroon 

出 版 物:《PHYSICA SCRIPTA》 (物理学报)

年 卷 期:2021年第96卷第12期

页      面:125232-125232页

核心收录:

学科分类:07[理学] 0702[理学-物理学] 

基  金:Center for Nonlinear Systems  Chennai Institute ofTechnology  India [CIT/CNS/2021/RD/064] 

主  题:Josephson junction cosine interference term bistable and coexisting attractors hidden chaotic attractor microcontroller implementation chimera 

摘      要:The dynamical behavior of a single and network of Josephson junction (JJ) model with cosine interference term (CIT) is explored in this paper. The rate-equations describing a single JJ model with CIT have no or two equilibrium points as a function of direct current (DC). The stability of two equilibrium points reveals that one of the equilibrium points is stable node and other is saddle node. The presence of CIT leads to the change of regular spiking and intrinsic bursting to periodic bursting. JJ circuit model with CIT shows the existence of bistable periodic attractors, periodic attractors, hidden chaotic attractors, and coexisting attractors during the numerical simulations. By increasing the coherence parameter, the coexisting attractors are controlled to bistable limit cycles. The microcontroller implementation of the JJ model with CIT is implemented to ascertain the results of numerical simulations. To demonstrate the collective behavior of the JJ model with CIT, a lattice array of identical JJ models with CIT is constructed and studied. By considering the coupling constant as the control parameter, it is demonstrated that the existence of incoherent nodes for lower coupling values and formation of chimera states when the coupling strength is increased.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分