版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Natl Inst Sci Educ & Res OCC Homi Bhabha Natl Inst Sch Math Sci Bhubaneswar 752050 India
出 版 物:《JOURNAL OF DIFFERENTIAL EQUATIONS》 (微分方程杂志)
年 卷 期:2022年第317卷
页 面:70-88页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:DST-INSPIRE [DST/IN-SPIRE/04/2019/001914]
主 题:Non-linear Hartree equation Global well-posedness Modulation spaces
摘 要:In this paper, we study the Cauchy problem for Hartree type equation iu(t) + u(xx) = [K * vertical bar u vertical bar(2)] with Cauchy data in modulation spaces Mp,q(R). We establish global well-posedness results in Mp,p (R) when K(x) = lambda/vertical bar x vertical bar(gamma), (lambda is an element of R, 0 gamma 1) with no smallness condition on initial data, where p is the Holder conjugate of p. Our proof uses a splitting method inspired by the work of Vargas-Vega, Hyakuna-Tsutsumi, Grunrock and Chaichenets et al. to the modulation space setting and exploits polynomial growth of the Schrodinger propagator on modulation spaces. (c) 2022 Elsevier Inc. All rights reserved.