咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >On the existence of global sol... 收藏

On the existence of global solutions of the Hartree equation for initial data in the modulation space M<SUP>p</SUP>(qR)

作     者:Manna, Ramesh 

作者机构:Natl Inst Sci Educ & Res OCC Homi Bhabha Natl Inst Sch Math Sci Bhubaneswar 752050 India 

出 版 物:《JOURNAL OF DIFFERENTIAL EQUATIONS》 (微分方程杂志)

年 卷 期:2022年第317卷

页      面:70-88页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:DST-INSPIRE [DST/IN-SPIRE/04/2019/001914] 

主  题:Non-linear Hartree equation Global well-posedness Modulation spaces 

摘      要:In this paper, we study the Cauchy problem for Hartree type equation iu(t) + u(xx) = [K * vertical bar u vertical bar(2)] with Cauchy data in modulation spaces Mp,q(R). We establish global well-posedness results in Mp,p (R) when K(x) = lambda/vertical bar x vertical bar(gamma), (lambda is an element of R, 0 gamma 1) with no smallness condition on initial data, where p is the Holder conjugate of p. Our proof uses a splitting method inspired by the work of Vargas-Vega, Hyakuna-Tsutsumi, Grunrock and Chaichenets et al. to the modulation space setting and exploits polynomial growth of the Schrodinger propagator on modulation spaces. (c) 2022 Elsevier Inc. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分