咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Learning parallax attention fo... 收藏
arXiv

Learning parallax attention for stereo image super-resolution

作     者:Wang, Longguang Wang, Yingqian Liang, Zhengfa Lin, Zaiping Yang, Jungang An, Wei Guo, Yulan 

作者机构:College of Electronic Science and Technology National University of Defense Technology China National Key Laboratory of Science and Technology on Blind Signal Processing China 

出 版 物:《arXiv》 (arXiv)

年 卷 期:2019年

核心收录:

主  题:Optical resolving power 

摘      要:Stereo image pairs can be used to improve the performance of super-resolution (SR) since additional information is provided from a second viewpoint. However, it is challenging to incorporate this information for SR since disparities between stereo images vary significantly. In this paper, we propose a parallax-attention stereo superresolution network (PASSRnet) to integrate the information from a stereo image pair for SR. Specifically, we introduce a parallax-attention mechanism with a global receptive field along the epipolar line to handle different stereo images with large disparity variations. We also propose a new and the largest dataset for stereo image SR (namely, Flickr1024). Extensive experiments demonstrate that the parallax-attention mechanism can capture correspondence between stereo images to improve SR performance with a small computational and memory cost. Comparative results show that our PASSRnet achieves the state-of-the-art performance on the Middlebury, KITTI 2012 and KITTI 2015 datasets. Copyright © 2019, The Authors. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分