咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Adaptive NMS: Refining pedestr... 收藏
arXiv

Adaptive NMS: Refining pedestrian detection in a crowd

作     者:Liu, Songtao Huang, Di Wang, Yunhong 

作者机构:Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University State Key Laboratory of Software Development Environment Beihang University School of Computer Science and Engineering Beihang University Beijing100191 

出 版 物:《arXiv》 (arXiv)

年 卷 期:2019年

核心收录:

主  题:Machine learning 

摘      要:Pedestrian detection in a crowd is a very challenging issue. This paper addresses this problem by a novel NonMaximum Suppression (NMS) algorithm to better refine the bounding boxes given by detectors. The contributions are threefold: (1) we propose adaptive-NMS, which applies a dynamic suppression threshold to an instance, according to the target density;(2) we design an efficient subnetwork to learn density scores, which can be conveniently embedded into both the single-stage and two-stage detectors;and (3) we achieve state of the art results on the CityPersons and CrowdHuman benchmarks. Copyright © 2019, The Authors. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分