咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Domain transfer for 3d pose es... 收藏
arXiv

Domain transfer for 3d pose estimation from color images without manual annotations

作     者:Rad, Mahdi Oberweger, Markus Lepetit, Vincent 

作者机构:Institute for Computer Graphics and Vision Graz University of Technology Graz Austria Laboratoire Bordelais de Recherche en Informatique Université de Bordeaux Bordeaux France 

出 版 物:《arXiv》 (arXiv)

年 卷 期:2018年

核心收录:

主  题:Color 

摘      要:We introduce a novel learning method for 3D pose estimation from color images. While acquiring annotations for color images is a difficult task, our approach circumvents this problem by learning a mapping from paired color and depth images captured with an RGB-D camera. We jointly learn the pose from synthetic depth images that are easy to generate, and learn to align these synthetic depth images with the real depth images. We show our approach for the task of 3D hand pose estimation and 3D object pose estimation, both from color images only. Our method achieves performances comparable to state-of-the-art methods on popular benchmark datasets, without requiring any annotations for the color images. Copyright © 2018, The Authors. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分