版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Beibu Gulf Univ Coll Elect & Informat Engn Qinzhou 535000 Guangxi Peoples R China Key Lab Big Data Resources Utilizat Qinzhou 535000 Guangxi Peoples R China Key Lab Adv Technol Internet Things Qinzhou 535000 Guangxi Peoples R China Guilin Univ Technol Coll Informat Sci & Engn Guilin 541000 Guangxi Peoples R China
出 版 物:《PATTERN RECOGNITION》 (图形识别)
年 卷 期:2022年第132卷
核心收录:
学科分类:0808[工学-电气工程] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:Science and Technology Development Program of Chinese Guangxi Province [AC17195057] Natural Science Foundation of Chinese Guangxi Province [2016GXNSFAA380102] High-level Scientific Research and Cultivation Project of Qinzhou University, China [2016PY-GJ03] Key Laboratory of Advanced Technology for Internet of Things, Qinzhou, China [IOT2017A02] School Grade Research Project of Qinzhou University, China [2017KYQD118]
主 题:Non -negative matrix factorization Nonlinear transformation Feature extraction Object recognition Clustering Kullback-Leibler divergence
摘 要:This paper introduces a Feature Nonlinear Transformation Non-Negative Matrix Factorization with Kullback-Leibler Divergence (FNTNMF-KLD) for extracting the nonlinear features of a matrix in standard NMF. This method uses a nonlinear transformation to act on the feature matrix for constructing a NMF model based on the objective function of Kullback-Leibler Divergence, and the Taylor series expansion and the Newton iteration formula of solving root are used to obtain the iterative update rules of the basis ma-trix and the feature matrix. Experimental results show that the proposed method obtains the nonlinear features of data matrix in a more efficient way. In object recognition and clustering tasks, better accuracy can be achieved over some typical NMF methods.(c) 2022 Elsevier Ltd. All rights reserved.