咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A TOPOLOGICAL CHARACTERIZATION... 收藏
arXiv

A TOPOLOGICAL CHARACTERIZATION OF SYMPLECTIC FILLINGS OF SEIFERT 3-MANIFOLDS

作     者:Choi, Hakho Park, Jongil Jeon, JaeKwan 

作者机构:Center for Quantum Structures in Modules and Spaces Seoul National University Seoul08826 Korea Republic of Department of Mathematical Sciences Seoul National University Seoul08826 Korea Republic of Department of Mathematics Chungnam National University Daejeon34134 Korea Republic of 

出 版 物:《arXiv》 (arXiv)

年 卷 期:2022年

核心收录:

主  题:Filling 

摘      要:In this paper, we investigate a surgical interpretation for minimal symplectic fillings of a given Seifert 3-manifold equipped with a canonical contact structure. Consequently, we determine a necessary and sufficient condition for a minimal symplectic filling of a Seifert 3-manifold satisfying certain conditions to be obtained by a sequence of rational blowdown surgery from the minimal resolution of the corresponding weighted homogeneous surface singularity. Furthermore, as an application, we prove that every minimal symplectic filling of a large family of Seifert 3-manifolds with a canonical contact structure is in fact realized as a Milnor fiber of the corresponding weighted homogeneous surface singularity in the Appendix. Copyright © 2022, The Authors. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分